/usr/include/InsightToolkit/Algorithms/itkAutomaticTopologyMeshSource.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkAutomaticTopologyMeshSource.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkAutomaticTopologyMeshSource_h
#define __itkAutomaticTopologyMeshSource_h
#include "itkArray.h"
#include "itkDefaultStaticMeshTraits.h"
#include "itk_hash_map.h"
#include "itkHexahedronCell.h"
#include "itkLineCell.h"
#include "itkMesh.h"
#include "itkMeshSource.h"
#include "itkQuadrilateralCell.h"
#include "itkStructHashFunction.h"
#include "itkTriangleCell.h"
#include "itkTetrahedronCell.h"
#include "itkVertexCell.h"
namespace itk
{
/** \class AutomaticTopologyMeshSource
* \brief Convenience class for generating meshes.
*
* This generates an N-dimensional mesh consisting of some combination
* of vertices, line segments, triangles, quadrilaterals, tetrahedra,
* and hexahedra. Identifiers for the cells are automatically added,
* and topological connectivity is automatically computed. When a
* cell is added, all of its boundary features are determined and
* added as well.
*
* The main methods are of the form Add<i>Thing</i>, where
* <i>Thing</i> can be Point, Vertex, Triangle, Quadrilateral,
* Tetrahedron, or Hexahedron. Each of these methods has several
* overloaded forms, permitting multiple ways to specify the object
* being added. When called, each of these methods first checks to
* see if the object has already been added. If it has not, then a
* new identifier is generated (the smallest one so far unused), the
* object is added with that identifier, and the ID is returned. If
* the object has already been added, then the ID it already has is
* returned and nothing else is done.
*
* When a cell is added, all of its boundary elements are also added,
* and boundary assignments are set. A cell can be specified using
* IDs of points already added, or using Point objects that may or may
* not already be in the mesh. If a cell is specified using Point
* objects, then the points are added to the mesh if necessary.
*
* The different ways of specifying a cell are
*
* -# An IdentifierArrayType (= itk::Array<IdentifierType>) of point
* identifiers. These point identifiers are the ones returned by
* calls to AddPoint().
* -# A parameter list of point identifiers (for instance,
* <tt>this->AddLine(0, 1)</tt>, if 0 and 1 are point identifiers).
* -# A parameter list of itk::Point objects (the function then
* generates the identifiers).
* -# A parameter list of C-style arrays, with each such array giving
* the coordinates of one point. This form is useful for copying
* in geometry from foreign data structures.
*
* For meshes generated using this filter, only one cell can be added
* for any given set of vertices. If a, b, c, and d are identifiers
* for four points in R^3, then (a, b, c, d) and (a, c, d, b)
* determine two different quadrilaterals (at least one of which is
* either degenerate or nonplanar). If you call
* \begincode
* AddQuadrilateral(a, b, c, d);
* AddQuadrilateral(a, c, d, b);
* \endcode
* then only the first quadrilateral will actually be added.
*
* To add the topological information to an already constructed mesh
* (for efficiency of traversal), use this class to generate a copy of
* the original mesh.
*
* \b Example: The following code generates a mesh consisting of two
* triangles sharing an edge.
* \code
* typedef itk::AutomaticTopologyMeshSource< MeshType > MeshSourceType;
* MeshSourceType::Pointer meshSource = MeshSourceType::New();
* meshSource->AddTriangle(
* meshSource->AddPoint(0, 0, 0),
* meshSource->AddPoint(1, 0, 0),
* meshSource->AddPoint(0, 1, 0) );
* meshSource->AddTriangle(
* meshSource->AddPoint(0, 0, 0),
* meshSource->AddPoint(1, 0, 0),
* meshSource->AddPoint(0, 0, 1) );
* \endcode
*
* This class inherits from itk::MeshSource so it fits conveniently into a
* pipeline, but GetOutput() is always valid after every
* Add[Something]() call, and Update() is a no-op. It is <b>not
* thread safe</b>.
*/
template <class TOutputMesh>
class ITK_EXPORT AutomaticTopologyMeshSource : public MeshSource<TOutputMesh>
{
public:
/** Standard "Self" typedef. */
typedef AutomaticTopologyMeshSource Self;
typedef MeshSource<TOutputMesh> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Hold on to the type information specified by the template parameters. */
typedef TOutputMesh MeshType;
typedef typename MeshType::PointHashType PointHashType;
typedef typename MeshType::PointType PointType;
typedef typename MeshType::CellType CellType;
typedef typename MeshType::Pointer MeshPointer;
typedef typename PointType::CoordRepType CoordinateType;
typedef typename CellType::CellAutoPointer CellAutoPointer;
/** Different kinds of cells. */
typedef ::itk::VertexCell< CellType > VertexCell;
typedef ::itk::LineCell< CellType > LineCell;
typedef ::itk::TriangleCell< CellType > TriangleCell;
typedef ::itk::QuadrilateralCell< CellType > QuadrilateralCell;
typedef ::itk::TetrahedronCell< CellType > TetrahedronCell;
typedef ::itk::HexahedronCell< CellType > HexahedronCell;
/** This class requires that the mesh being built use unsigned long
* as the identifier type for all its elements. */
typedef unsigned long IdentifierType;
/** Array of IdentifierType objects used to specify cells. */
typedef Array< IdentifierType > IdentifierArrayType;
/** hash_map typedefs. */
typedef itk::hash_map<
PointType,
IdentifierType,
StructHashFunction< PointHashType > > PointHashMap;
/** The dimension of the output mesh. */
itkStaticConstMacro(PointDimension, unsigned int,
MeshType::PointDimension);
itkStaticConstMacro(MaxTopologicalDimension, unsigned int,
MeshType::MaxTopologicalDimension);
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(AutomaticTopologyMeshSource, MeshSource);
/** Add the point p0 if it's not already there, and return its ID. */
IdentifierType AddPoint( const PointType& p0 );
IdentifierType AddPoint( const CoordinateType* p0);
/** Add the point with coordinates (x0, ..., xN) where N =
* PointDimension - 1. If N < 5, then any parameters after xN are
* ignored. If PointDimension > 6, then a point is generated with
* the first six coordinates equal to x0, ..., x5, and the rest set
* to 0. */
IdentifierType AddPoint( CoordinateType x0 = 0, CoordinateType x1 = 0,
CoordinateType x2 = 0, CoordinateType x3 = 0,
CoordinateType x4 = 0, CoordinateType x5 = 0 );
/** Add a vertex located at the given point, and return its ID. */
IdentifierType AddVertex( const IdentifierArrayType& pointIds );
IdentifierType AddVertex( IdentifierType pointId0 );
IdentifierType AddVertex( const PointType& p0 );
IdentifierType AddVertex( const CoordinateType* p0);
/** Add the line specified by the two points, and return its ID.
* The endpoints and their associated vertices are associated to the
* line in the order that they are specified the first time the
* function is called. */
IdentifierType AddLine( const IdentifierArrayType& pointIds );
IdentifierType AddLine(
IdentifierType pointId0, IdentifierType pointId1 );
IdentifierType AddLine( const PointType& p0, const PointType& p1 );
IdentifierType AddLine( const CoordinateType* p0,
const CoordinateType* p1);
/** Add the triangle specified by the three points, and return its
* ID. If the points are p0, p1, and p2, then the following
* additional cells (represented here as ordered tuples) are created
* (if they don't already exist) and associated as boundaries, in
* the order given:
*
* Vertices: (p0), (p1), (p2).
*
* Lines: (p0, p1), (p1, p2), (p2, p0).
* */
IdentifierType AddTriangle( const IdentifierArrayType& pointIds );
IdentifierType AddTriangle(
IdentifierType pointId0, IdentifierType pointId1,
IdentifierType pointId2 );
IdentifierType AddTriangle( const PointType& p0, const PointType& p1,
const PointType& p2 );
IdentifierType AddTriangle( const CoordinateType* p0,
const CoordinateType* p1,
const CoordinateType* p2);
/** Add the quadrilateral specified by the four points, and return its
* ID. If the points are p0, p1, p2, and p3, then the following
* additional cells (represented here as ordered tuples) are created
* (if they don't already exist) and associated as boundaries, in
* the order given:
*
* Vertices: (p0), (p1), (p2), (p3).
*
* Lines: (p0, p1), (p2, p3), (p0, p2), (p1, p3).
*
* In particular, if the points are arranged geometrically as follows
\verbatim
p0 p1
p2 p3
\endverbatim
*
* then you would call, for instance,
* <tt>meshSource->AddQuadrilateral(p0, p1, p2, p3)</tt>.
* */
IdentifierType AddQuadrilateral( const IdentifierArrayType& pointIds );
IdentifierType AddQuadrilateral(
IdentifierType pointId0, IdentifierType pointId1,
IdentifierType pointId2, IdentifierType pointId3 );
IdentifierType AddQuadrilateral( const PointType& p0, const PointType& p1,
const PointType& p2, const PointType& p3 );
IdentifierType AddQuadrilateral( const CoordinateType* p0,
const CoordinateType* p1,
const CoordinateType* p2,
const CoordinateType* p3);
/** Add the tetrahedron specified by the three points, and return its
* ID. If the points are p0, p1, and p2, then the following
* additional cells (represented here as ordered tuples) are created
* (if they don't already exist) and associated as boundaries, in
* the order given:
*
* Vertices: (p0), (p1), (p2), (p3).
*
* Lines: (p0, p1), (p0, p2), (p0, p3), (p1, p2), (p1, p3), (p2, p3).
*
* Triangles: (p0, p1, p2), (p0, p1, p3), (p0, p2, p3), (p1, p2, * p3).
* */
IdentifierType AddTetrahedron( const IdentifierArrayType& pointIds );
IdentifierType AddTetrahedron(
IdentifierType pointId0, IdentifierType pointId1,
IdentifierType pointId2, IdentifierType pointId3 );
IdentifierType AddTetrahedron( const PointType& p0, const PointType& p1,
const PointType& p2, const PointType& p3 );
IdentifierType AddTetrahedron( const CoordinateType* p0,
const CoordinateType* p1,
const CoordinateType* p2,
const CoordinateType* p3);
/** Add the hexahedron specified by the four points, and return its
* ID. If the points are p0, p1, p2, and p3, then the following
* additional cells (represented here as ordered tuples) are created
* (if they don't already exist) and associated as boundaries, in
* the order given:
*
* Vertices: (p0), (p1), (p2), (p3), (p4), (p5), (p6), (p7).
*
* Lines: (p0, p1), (p2, p3), (p4, p5), (p6, p7), (p0, p2), (p1,
* p3), (p4, p6), (p5, p7), (p0, p4), (p1, p5), (p2, p6), (p3, p7).
*
* Quadrilaterals: (0, 1, 2, 3), (4, 5, 6, 7), (0, 1, 4, 5), (2, 3,
* 6, 7), (0, 2, 4, 6), (1, 3, 5, 7),
*
* In particular, if the points are connected topologically as follows
\verbatim
p4------------p5
| \ / |
| p0------p1 |
| | | |
| | | |
| p2------p3 |
| / \ |
p6------------p7
\endverbatim
* then you would call, for instance,
* <tt>meshSource->AddQuadrilateral(p0, p1, p2, p3, p4, p5, p6,
* p7)</tt>. */
IdentifierType AddHexahedron( const IdentifierArrayType& pointIds );
IdentifierType AddHexahedron(
IdentifierType pointId0, IdentifierType pointId1,
IdentifierType pointId2, IdentifierType pointId3,
IdentifierType pointId4, IdentifierType pointId5,
IdentifierType pointId6, IdentifierType pointId7 );
IdentifierType AddHexahedron(
const PointType& p0, const PointType& p1, const PointType& p2,
const PointType& p3, const PointType& p4, const PointType& p5,
const PointType& p6, const PointType& p7
);
IdentifierType AddHexahedron( const CoordinateType* p0,
const CoordinateType* p1,
const CoordinateType* p2,
const CoordinateType* p3,
const CoordinateType* p4,
const CoordinateType* p5,
const CoordinateType* p6,
const CoordinateType* p7);
class IdentifierArrayHashFunction
{
public:
unsigned long operator()( Array< unsigned long > identifierArray) const
{
typedef unsigned long Ulong;
Ulong size = identifierArray.Size();
std::sort( identifierArray.begin(), identifierArray.end() );
Ulong hash = 0;
Ulong* id = &identifierArray[ 0 ];
while( size-- )
{
hash += *id++;
hash = (hash << 7) | (hash >> 25); // Rotate left by 7.
}
return hash;
}
};
class IdentifierArrayEqualsFunction
{
public:
bool operator()(
Array< unsigned long > identifierArray1,
Array< unsigned long > identifierArray2
) const
{
typedef unsigned long Ulong;
Ulong size1 = identifierArray1.Size();
Ulong size2 = identifierArray2.Size();
if( size1 != size2 )
{
return false;
}
std::sort( identifierArray1.begin(), identifierArray1.end() );
std::sort( identifierArray2.begin(), identifierArray2.end() );
return ( identifierArray1 == identifierArray2 );
}
};
protected:
AutomaticTopologyMeshSource();
~AutomaticTopologyMeshSource();
void GenerateData() {}; // GenerateData is a no-op, since the entries
// are controlled manually
private:
AutomaticTopologyMeshSource(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
typedef itk::hash_map<
Array< IdentifierType >,
IdentifierType,
IdentifierArrayHashFunction,
IdentifierArrayEqualsFunction > CellHashMap;
PointHashMap m_PointsHashTable;
CellHashMap m_CellsHashTable;
MeshPointer m_OutputMesh; // Retained for convenience.
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkAutomaticTopologyMeshSource.txx"
#endif
#endif // __itkAutomaticTopologyMeshSource_h
|