This file is indexed.

/usr/include/InsightToolkit/Algorithms/itkCurvatureFlowFunction.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkCurvatureFlowFunction.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkCurvatureFlowFunction_txx
#define __itkCurvatureFlowFunction_txx
#include "itkCurvatureFlowFunction.h"

#include "vnl/vnl_math.h"

namespace itk {

/**
 * Constructor
 */
template<class TImage>
CurvatureFlowFunction<TImage>
::CurvatureFlowFunction()
{

  RadiusType r;
  unsigned int j;
  for( j = 0; j < ImageDimension; j++ )
    {
    r[j] = 1;
    }

  this->SetRadius(r);

  m_TimeStep  = 0.05f;

}


/**
 * Compute the global time step
 */
template<class TImage>
typename CurvatureFlowFunction<TImage>::TimeStepType
CurvatureFlowFunction<TImage>
::ComputeGlobalTimeStep( void *itkNotUsed(gd) ) const
{

  return this->GetTimeStep();


  // \todo compute timestep based on CFL condition
#if 0
  GlobalDataStruct *globalData = (GlobalDataStruct *)gd;
  TimeStepType dt;

  if ( globalData->m_MaxChange > 0.0 )
    {
    dt = 1.0 / globalData->m_MaxChange;
    }
  else
    {
    dt = 0.0;
    }

  return dt;
#endif
}


/**
 * Update the solution at pixels which lies on the data boundary.
 */
template<class TImage>
typename CurvatureFlowFunction<TImage>::PixelType
CurvatureFlowFunction<TImage>
::ComputeUpdate(const NeighborhoodType &it, void * itkNotUsed(gd),
                const FloatOffsetType& itkNotUsed(offset))
{
  PixelRealType firstderiv[ImageDimension];
  PixelRealType secderiv[ImageDimension];
  PixelRealType crossderiv[ImageDimension][ImageDimension];
  unsigned long center;
  unsigned long stride[ImageDimension];
  unsigned int i,j;

  const NeighborhoodScalesType neighborhoodScales = this->ComputeNeighborhoodScales();

  // get the center pixel position
  center = it.Size() / 2;

  // cache the stride for each dimension
  for( i = 0; i < ImageDimension; i++ )
    {
    stride[i] = it.GetStride( (unsigned long) i );
    }

  PixelRealType magnitudeSqr = 0.0;
  for( i = 0; i < ImageDimension; i++ )
    {

    // compute first order derivatives
    firstderiv[i] = 0.5 * ( it.GetPixel(center + stride[i]) - 
                            it.GetPixel(center - stride[i]) ) * neighborhoodScales[i];

    // compute second order derivatives
    secderiv[i] = ( it.GetPixel(center + stride[i]) - 
                    2 * it.GetPixel(center) + it.GetPixel( center - stride[i] ) ) * vnl_math_sqr( neighborhoodScales[i] );

    // compute cross derivatives
    for( j = i + 1; j < ImageDimension; j++ )
      {
      crossderiv[i][j] = 0.25 * (
        it.GetPixel( center - stride[i] - stride[j] ) 
        - it.GetPixel( center - stride[i] + stride[j] )
        - it.GetPixel( center + stride[i] - stride[j] ) 
        + it.GetPixel( center + stride[i] + stride[j] ) ) 
        * neighborhoodScales[i] * neighborhoodScales[j];
      }

    // accumlate the gradient magnitude squared
    magnitudeSqr += vnl_math_sqr( (double)firstderiv[i] );

    }

  if ( magnitudeSqr < 1e-9 )
    {
    return NumericTraits<PixelType>::Zero; 
    }

  // compute the update value = mean curvature * magnitude
  PixelRealType update = 0.0;
  PixelRealType temp;

  // accumulate dx^2 * (dyy + dzz) terms
  for( i = 0; i < ImageDimension; i++ )
    {
    temp = 0.0;
    for( j = 0; j < ImageDimension; j++ )
      {
      if( j == i ) continue;
      temp += secderiv[j];
      }
    
    update += temp * vnl_math_sqr( (double)firstderiv[i] );
    }

  // accumlate -2 * dx * dy * dxy terms
  for( i = 0; i < ImageDimension; i++ )
    {
    for( j = i + 1; j < ImageDimension; j++ )
      {
      update -= 2 * firstderiv[i] * firstderiv[j] *
        crossderiv[i][j];
      }
    }
   
  update /= magnitudeSqr;

  // \todo compute timestep based on CFL condition
#if 0
  GlobalDataStruct *globalData = (GlobalDataStruct *)gd;
  globalData->m_MaxChange =
    vnl_math_max( globalData->m_MaxChange, vnl_math_abs(update) );
#endif
  return static_cast<PixelType>(update);

}

} // end namespace itk

#endif