This file is indexed.

/usr/include/InsightToolkit/Algorithms/itkLevelSetMotionRegistrationFunction.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkLevelSetMotionRegistrationFunction.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkLevelSetMotionRegistrationFunction_txx
#define __itkLevelSetMotionRegistrationFunction_txx

#include "itkLevelSetMotionRegistrationFunction.h"
#include "itkExceptionObject.h"
#include "vnl/vnl_math.h"

namespace itk {

/**
 * Default constructor
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::LevelSetMotionRegistrationFunction()
{

  RadiusType r;
  unsigned int j;
  for( j = 0; j < ImageDimension; j++ )
    {
    r[j] = 0;
    }
  this->SetRadius(r);

  m_Alpha = 0.1;
  m_GradientMagnitudeThreshold = 1e-9;
  m_IntensityDifferenceThreshold = 0.001;
  m_GradientSmoothingStandardDeviations = 1.0;
  this->SetMovingImage(NULL);
  this->SetFixedImage(NULL);

  typename DefaultInterpolatorType::Pointer interp =
    DefaultInterpolatorType::New();

  m_MovingImageInterpolator = static_cast<InterpolatorType*>(
    interp.GetPointer() );

  m_Metric = NumericTraits<double>::max();
  m_SumOfSquaredDifference = 0.0;
  m_NumberOfPixelsProcessed = 0L;
  m_RMSChange = NumericTraits<double>::max();
  m_SumOfSquaredChange = 0.0;
  m_UseImageSpacing = true;

  m_MovingImageSmoothingFilter = MovingImageSmoothingFilterType::New();
  m_MovingImageSmoothingFilter
    ->SetSigma( m_GradientSmoothingStandardDeviations );
  m_MovingImageSmoothingFilter->SetNormalizeAcrossScale(false);

  m_SmoothMovingImageInterpolator
    = static_cast<InterpolatorType *>(
      DefaultInterpolatorType::New().GetPointer());
}


/*
 * Standard "PrintSelf" method.
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "MovingImageIterpolator: ";
  os << m_MovingImageInterpolator.GetPointer() << std::endl;
  os << indent << "IntensityDifferenceThreshold: ";
  os << m_IntensityDifferenceThreshold << std::endl;
  os << indent << "GradientMagnitudeThreshold: ";
  os << m_GradientMagnitudeThreshold << std::endl;
  os << indent << "Alpha: ";
  os << m_Alpha << std::endl;

  os << indent << "Metric: ";
  os << m_Metric << std::endl;
  os << indent << "SumOfSquaredDifference: ";
  os << m_SumOfSquaredDifference << std::endl;
  os << indent << "NumberOfPixelsProcessed: ";
  os << m_NumberOfPixelsProcessed << std::endl;
  os << indent << "RMSChange: ";
  os << m_RMSChange << std::endl;
  os << indent << "SumOfSquaredChange: ";
  os << m_SumOfSquaredChange << std::endl;

}


/**
 *
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::SetAlpha(double alpha)
{
  m_Alpha = alpha;
}

/**
 *
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
double
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::GetAlpha() const
{
  return m_Alpha;
}

/**
 *
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::SetIntensityDifferenceThreshold(double threshold)
{
  m_IntensityDifferenceThreshold = threshold;
}

/**
 *
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
double
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::GetIntensityDifferenceThreshold() const
{
  return m_IntensityDifferenceThreshold;
}


/**
 *
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::SetGradientMagnitudeThreshold(double threshold)
{
  m_GradientMagnitudeThreshold = threshold;
}

/**
 *
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
double
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::GetGradientMagnitudeThreshold() const
{
  return m_GradientMagnitudeThreshold;
}


/**
 *
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::SetGradientSmoothingStandardDeviations(double sigma)
{
  m_GradientSmoothingStandardDeviations = sigma;
}

/**
 *
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
double
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::GetGradientSmoothingStandardDeviations() const
{
  return m_GradientSmoothingStandardDeviations;
}

/**
 * Return the flag that defines whether the image spacing should be taken into
 * account in computations.
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
bool
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::GetUseImageSpacing() const
{
  return this->m_UseImageSpacing;
}
 
/**
 * Set the flag that defines whether the image spacing should be taken into
 * account in computations.
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::SetUseImageSpacing( bool useImageSpacing )
{
  this->m_UseImageSpacing = useImageSpacing;
}

/**
 * Set the function state values before each iteration
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::InitializeIteration()
{
  if( !this->GetMovingImage() || !this->GetFixedImage() || !m_MovingImageInterpolator )
    {
    itkExceptionMacro( << "MovingImage, FixedImage and/or Interpolator not set" );
    }

  // create a smoothed version of the moving image for the calculation
  // of gradients.  due to the pipeline structure, this will only be
  // calculated once. InitializeIteration() is called in a single
  // threaded execution model. 
  m_MovingImageSmoothingFilter->SetInput( this->GetMovingImage() );
  m_MovingImageSmoothingFilter
    ->SetSigma( m_GradientSmoothingStandardDeviations );
  m_MovingImageSmoothingFilter->Update();

  m_SmoothMovingImageInterpolator
     ->SetInputImage( m_MovingImageSmoothingFilter->GetOutput() );
  
  // setup moving image interpolator
  m_MovingImageInterpolator->SetInputImage( this->GetMovingImage() );

  // initialize metric computation variables
  m_SumOfSquaredDifference  = 0.0;
  m_NumberOfPixelsProcessed = 0L;
  m_SumOfSquaredChange      = 0.0;

}

/**
 * Compute update at a specify neighbourhood
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
typename LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::PixelType
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::ComputeUpdate(const NeighborhoodType &it, void * gd,
                const FloatOffsetType& itkNotUsed(offset))
{
  const IndexType index = it.GetIndex();

  // Get fixed image related information
  // Note: no need to check the index is within
  // fixed image buffer. This is done by the external filter.
  const double fixedValue = (double) this->GetFixedImage()->GetPixel( index );

  // Get moving image related information
  PointType mappedPoint;
  this->GetFixedImage()->TransformIndexToPhysicalPoint(index, mappedPoint);
  for(unsigned int j = 0; j < ImageDimension; j++ )
    {
    mappedPoint[j] += it.GetCenterPixel()[j];
    }
  PixelType update;
  double movingValue;
  if( m_MovingImageInterpolator->IsInsideBuffer( mappedPoint ) )
    {
    movingValue = m_MovingImageInterpolator->Evaluate( mappedPoint );
    }
  else
    {
    update.Fill(0.0);
    return update;
    }

  // Calculate the gradient using minmod finite differences
  //
  //
  //

  // first calculate the forward and backward differences on the
  // smooth image. Do we need to structure the gradient calculation to
  // take into account the Jacobian of the deformation field? i.e. in
  // which coordinate frame do we ultimately want the gradient vector?
  
  MovingSpacingType mSpacing = this->GetMovingImage()->GetSpacing();

  if( !this->m_UseImageSpacing )
    {
    mSpacing.Fill( 1.0 );
    }

  PointType mPoint( mappedPoint );
  const double centralValue = m_SmoothMovingImageInterpolator->Evaluate( mPoint );
  double forwardDifferences[ImageDimension];
  double backwardDifferences[ImageDimension];
  for (unsigned int j=0; j < ImageDimension; j++)
    {
    mPoint[j] += mSpacing[j];
    if( m_SmoothMovingImageInterpolator->IsInsideBuffer( mPoint ) )
      {
      forwardDifferences[j] = m_SmoothMovingImageInterpolator->Evaluate(mPoint)
        - centralValue;
      forwardDifferences[j] /= mSpacing[j];
      }
    else
      {
      forwardDifferences[j] = 0.0;
      }

    mPoint[j] -= (2.0 * mSpacing[j]);
    if( m_SmoothMovingImageInterpolator->IsInsideBuffer( mPoint ) )
      {
      backwardDifferences[j] = centralValue
        - m_SmoothMovingImageInterpolator->Evaluate( mPoint );
      backwardDifferences[j] /= mSpacing[j];
      }
    else
      {
      backwardDifferences[j] = 0.0;
      }
    // std::cout << "F(" << j << ") : " << forwardDifferences[j] << std::endl;
    // std::cout << "B(" << j << ") : " << backwardDifferences[j] << std::endl;
    mPoint[j] += mSpacing[j];
    }

  // minmod finite difference
  //
  // m(x,y) = sign(x) min(|x|, |y|)    if xy >  0
  //          0                        if xy <= 0
  //
  // gradient[j] = m(forwardDifferences[j], backwardDifferences[j])
  //
  CovariantVectorType gradient;
  double gradientMagnitude = 0.0;
  for(unsigned int j = 0; j < ImageDimension; j++ )
    {
    if (forwardDifferences[j] * backwardDifferences[j] > 0.0)
      {
      const double bvalue = vnl_math_abs(backwardDifferences[j]);
      double gvalue = vnl_math_abs(forwardDifferences[j]);
      if (gvalue > bvalue)
        {
        gvalue = bvalue;
        }
      gradient[j] = gvalue * vnl_math_sgn(forwardDifferences[j]);
      }
    else
      {
      gradient[j] = 0.0;
      }
    gradientMagnitude += vnl_math_sqr( gradient[j] );
    }
  gradientMagnitude = vcl_sqrt( gradientMagnitude );

  /**
   * Compute Update.
   */
  const double speedValue = fixedValue - movingValue;
  // update the metric
  GlobalDataStruct *globalData = (GlobalDataStruct *)gd;
  if ( globalData )
    {
    globalData->m_SumOfSquaredDifference += vnl_math_sqr( speedValue );
    globalData->m_NumberOfPixelsProcessed += 1;
    }

  if ( vnl_math_abs(speedValue) < m_IntensityDifferenceThreshold 
       || gradientMagnitude < m_GradientMagnitudeThreshold )
    {
    update.Fill(0.0);
    return update;
    }

  double L1norm = 0.0;
  for(unsigned int j = 0; j < ImageDimension; j++ )
    {
    update[j] = speedValue * gradient[j] / (gradientMagnitude + m_Alpha);
    if ( globalData )
      {
      globalData->m_SumOfSquaredChange += vnl_math_sqr( update[j] );

      // build up the L1norm of the update, normalized by the pixel
      // spacing. we will use this to calculate a timestep which
      // converts the update (measured in intensity) to a vector
      // measured in physical units (mm).
      L1norm += (vnl_math_abs(update[j]) / mSpacing[j]);
      }
    }

  // Store the L1 norm of the update vector if it is the largest
  // update.  This is used in calculating the timestep.
  if (globalData && (L1norm > globalData->m_MaxL1Norm))
    {
    globalData->m_MaxL1Norm = L1norm;
    }
  return update;
}

/**
 * Compute the global time step for this iteration.
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
typename LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>::TimeStepType
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::ComputeGlobalTimeStep(void *GlobalData) const
{
  TimeStepType dt = 1.0;

  GlobalDataStruct *d = (GlobalDataStruct *)GlobalData;

  if (d->m_MaxL1Norm > 0.0)
    {
    dt = 1.0 / d->m_MaxL1Norm;
    // std::cout << "Computed timestep: " << dt << std::endl;
    }
  else
    {
    // std::cout << "Using default timestep: " << dt << std::endl;
    }

  return dt;
}


/*
 * Update the metric and release the per-thread-global data.
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
LevelSetMotionRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::ReleaseGlobalDataPointer( void *gd ) const
{
  GlobalDataStruct * globalData = (GlobalDataStruct *) gd;

  m_MetricCalculationLock.Lock();
  m_SumOfSquaredDifference += globalData->m_SumOfSquaredDifference;
  m_NumberOfPixelsProcessed += globalData->m_NumberOfPixelsProcessed;
  m_SumOfSquaredChange += globalData->m_SumOfSquaredChange;
  if ( m_NumberOfPixelsProcessed )
    {
    m_Metric = m_SumOfSquaredDifference / 
               static_cast<double>( m_NumberOfPixelsProcessed ); 
    m_RMSChange = vcl_sqrt( m_SumOfSquaredChange / 
               static_cast<double>( m_NumberOfPixelsProcessed ) ); 
    }
  m_MetricCalculationLock.Unlock();

  delete globalData;
}

} // end namespace itk

#endif