/usr/include/InsightToolkit/Algorithms/itkMRASlabIdentifier.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkMRASlabIdentifier.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkMRASlabIdentifier_txx
#define __itkMRASlabIdentifier_txx
#include <algorithm>
#include <vector>
#include <queue>
#include "itkMRASlabIdentifier.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "vnl/vnl_math.h"
namespace itk
{
template<class TInputImage>
MRASlabIdentifier<TInputImage>
::MRASlabIdentifier()
{
m_Image = 0;
m_NumberOfSamples = 10;
m_BackgroundMinimumThreshold = NumericTraits< ImagePixelType >::min();
m_Tolerance = 0.0;
// default slicing axis is z
m_SlicingDirection = 2;
}
template<class TInputImage>
void
MRASlabIdentifier<TInputImage>
::GenerateSlabRegions(void)
{
// this method only works with 3D MRI image
if (ImageType::ImageDimension != 3)
{
itkExceptionMacro("ERROR: This algorithm only works with 3D images.");
}
ImageSizeType size;
ImageRegionType region;
ImageIndexType index;
region = m_Image->GetLargestPossibleRegion();
size = region.GetSize();
index = region.GetIndex();
long firstSlice = index[m_SlicingDirection];
long lastSlice = firstSlice + size[m_SlicingDirection];
unsigned long totalSlices = size[m_SlicingDirection];
double sum;
std::vector<double> avgMin(totalSlices);
// calculate minimum intensities for each slice
ImagePixelType pixel;
for (int i = 0; i < 3; i++)
{
if (i != m_SlicingDirection)
{
index[i] = 0;
}
}
size[m_SlicingDirection] = 1;
region.SetSize(size);
unsigned long count = 0;
long currentSlice = firstSlice;
while (currentSlice < lastSlice)
{
index[m_SlicingDirection] = currentSlice;
region.SetIndex(index);
ImageRegionConstIterator<TInputImage> iter(m_Image, region);
iter.GoToBegin();
std::priority_queue<ImagePixelType> mins;
for ( unsigned int i = 0; i < m_NumberOfSamples; ++i )
{
mins.push( NumericTraits< ImagePixelType >::max() );
}
while (!iter.IsAtEnd())
{
pixel = iter.Get();
if ( pixel > m_BackgroundMinimumThreshold )
{
if ( mins.top() > pixel )
{
mins.pop();
mins.push( pixel );
}
}
++iter;
}
sum = 0.0;
while ( !mins.empty() )
{
sum += mins.top();
mins.pop();
}
avgMin[count] = sum / (double) m_NumberOfSamples;
++count;
++currentSlice;
}
// calculate overall average
sum = 0.0;
std::vector<double>::iterator am_iter = avgMin.begin();
while (am_iter != avgMin.end())
{
sum += *am_iter;
++am_iter;
}
double average = sum / (double) totalSlices;
// determine slabs
am_iter = avgMin.begin();
double prevSign = *am_iter - average;
double avgMinValue;
ImageIndexType slabIndex;
ImageRegionType slabRegion;
ImageSizeType slabSize;
long slabLength = 0;
long slabBegin = firstSlice;
slabSize = size;
slabIndex = index;
while (am_iter != avgMin.end())
{
avgMinValue = *am_iter;
double sign = avgMinValue - average;
if ( (sign * prevSign < 0 ) && ( vnl_math_abs(sign) > m_Tolerance ) )
{
slabIndex[m_SlicingDirection] = slabBegin;
slabSize[m_SlicingDirection] = slabLength;
slabRegion.SetSize(slabSize);
slabRegion.SetIndex(slabIndex);
m_Slabs.push_back(slabRegion);
prevSign = sign;
slabBegin += slabLength;
slabLength = 0;
}
am_iter++;
slabLength++;
}
slabIndex[m_SlicingDirection] = slabBegin;
slabSize[m_SlicingDirection] = slabLength;
slabRegion.SetIndex(slabIndex);
slabRegion.SetSize(slabSize);
m_Slabs.push_back(slabRegion);
}
template<class TInputImage>
typename MRASlabIdentifier<TInputImage>::SlabRegionVectorType
MRASlabIdentifier<TInputImage>
::GetSlabRegionVector(void)
{
return m_Slabs;
}
template<class TInputImage>
void
MRASlabIdentifier<TInputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
if (m_Image)
{
os << indent << "Image: " << m_Image << std::endl;
}
else
{
os << indent << "Image: " << "(None)" << std::endl;
}
os << indent << "NumberOfSamples: " << m_NumberOfSamples << std::endl;
os << indent << "SlicingDirection: " << m_SlicingDirection << std::endl;
os << indent << "Background Pixel Minimum Intensity Threshold: "
<< m_BackgroundMinimumThreshold << std::endl;
os << indent << "Tolerance: " << m_Tolerance << std::endl;
}
} // end namespace itk
#endif /* __itkMRASlabIdentifier_txx */
|