This file is indexed.

/usr/include/InsightToolkit/Algorithms/itkMeanSquareRegistrationFunction.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkMeanSquareRegistrationFunction.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkMeanSquareRegistrationFunction_txx
#define __itkMeanSquareRegistrationFunction_txx

#include "itkMeanSquareRegistrationFunction.h"
#include "itkExceptionObject.h"
#include "vnl/vnl_math.h"

namespace itk {

/**
 * Default constructor
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::MeanSquareRegistrationFunction()
{

  RadiusType r;
  unsigned int j;
  for( j = 0; j < ImageDimension; j++ )
    {
    r[j] = 0;
    }
  this->SetRadius(r);

  this->SetEnergy(0.0);
  m_TimeStep = 1.0;
  m_DenominatorThreshold = 1e-9;
  m_IntensityDifferenceThreshold = 0.001;
  this->SetMovingImage(NULL);
  this->SetFixedImage(NULL);
  m_FixedImageGradientCalculator = GradientCalculatorType::New();


  typename DefaultInterpolatorType::Pointer interp =
    DefaultInterpolatorType::New();

  m_MovingImageInterpolator = static_cast<InterpolatorType*>(
    interp.GetPointer() );


}


/*
 * Standard "PrintSelf" method.
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
/*
  os << indent << "MovingImageIterpolator: ";
  os << m_MovingImageInterpolator.GetPointer() << std::endl;
  os << indent << "FixedImageGradientCalculator: ";
  os << m_FixedImageGradientCalculator.GetPointer() << std::endl;
  os << indent << "DenominatorThreshold: ";
  os << m_DenominatorThreshold << std::endl;
  os << indent << "IntensityDifferenceThreshold: ";
  os << m_IntensityDifferenceThreshold << std::endl;
*/
}


/*
 * Set the function state values before each iteration
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::InitializeIteration()
{
  if( !this->GetMovingImage() || !this->GetFixedImage() || !m_MovingImageInterpolator )
    {
    itkExceptionMacro( << "MovingImage, FixedImage and/or Interpolator not set" );
    }

  // cache fixed image information
  m_FixedImageSpacing    = this->GetFixedImage()->GetSpacing();

  // setup gradient calculator
  m_FixedImageGradientCalculator->SetInputImage( this->GetFixedImage() );

  // setup moving image interpolator
  m_MovingImageInterpolator->SetInputImage( this->GetMovingImage() );

  this->SetEnergy(0.0);
}


/**
 * Compute update at a non boundary neighbourhood
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
typename MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::PixelType
MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::ComputeUpdate(const NeighborhoodType &it, void * itkNotUsed(globalData),
                const FloatOffsetType& itkNotUsed(offset))
{
  // Get fixed image related information
  // Note: no need to check the index is within
  // fixed image buffer. This is done by the external filter.
  const IndexType index = it.GetIndex();
  const double fixedValue = (double) this->GetFixedImage()->GetPixel( index );
  const CovariantVectorType fixedGradient = m_FixedImageGradientCalculator->EvaluateAtIndex( index );
  double fixedGradientSquaredMagnitude = 0;
  for(unsigned int j = 0; j < ImageDimension; j++ )
    {
    fixedGradientSquaredMagnitude += vnl_math_sqr( fixedGradient[j] ) * m_FixedImageSpacing[j];
    }

  // Get moving image related information
  const DeformationFieldPixelType itvec = this->GetDeformationField()->GetPixel(index);
  PointType mappedPoint;
  this->GetFixedImage()->TransformIndexToPhysicalPoint(index, mappedPoint);
  for(unsigned int j = 0; j < ImageDimension; j++ )
    {
      mappedPoint[j] += itvec[j];
    }
  double movingValue=0.0;
  if( m_MovingImageInterpolator->IsInsideBuffer( mappedPoint ) )
    {
    movingValue = m_MovingImageInterpolator->Evaluate( mappedPoint );
    }

  // Compute update
  const double speedValue = fixedValue - movingValue;
  this->m_Energy += speedValue * speedValue;

  const bool normalizemetric=this->GetNormalizeGradient();
  double denominator = 1.0;
  if (normalizemetric)
    {
    denominator = speedValue*speedValue *fixedGradientSquaredMagnitude;
    denominator = vcl_sqrt(denominator);
    }
  if (denominator == 0)
    {
    denominator=1.0;
    }
  PixelType update;
  if ( vnl_math_abs(speedValue) < m_IntensityDifferenceThreshold ||
    denominator < m_DenominatorThreshold )
    {
    update.Fill(0.0);
    return update;
    }

  for(unsigned int j = 0; j < ImageDimension; j++ )
    {
    update[j] = speedValue * fixedGradient[j] * vnl_math_sqr(m_FixedImageSpacing[j]) /
      denominator*this->m_GradientStep;
    }
  return update;
}

} // end namespace itk

#endif