/usr/include/InsightToolkit/Algorithms/itkRayCastInterpolateImageFunction.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkRayCastInterpolateImageFunction.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkRayCastInterpolateImageFunction_txx
#define __itkRayCastInterpolateImageFunction_txx
#include "itkRayCastInterpolateImageFunction.h"
#include "vnl/vnl_math.h"
// Put the helper class in an anonymous namespace so that it is not
// exposed to the user
namespace
{
/** \class Helper class to maintain state when casting a ray.
* This helper class keeps the RayCastInterpolateImageFunction thread safe.
*/
template <class TInputImage, class TCoordRep = float>
class RayCastHelper
{
public:
/** Constants for the image dimensions */
itkStaticConstMacro(InputImageDimension, unsigned int,
TInputImage::ImageDimension);
/**
* Type of the Transform Base class
* The fixed image should be a 3D image
*/
typedef itk::Transform<TCoordRep,3,3> TransformType;
typedef typename TransformType::Pointer TransformPointer;
typedef typename TransformType::InputPointType InputPointType;
typedef typename TransformType::OutputPointType OutputPointType;
typedef typename TransformType::ParametersType TransformParametersType;
typedef typename TransformType::JacobianType TransformJacobianType;
typedef typename TInputImage::SizeType SizeType;
typedef itk::Vector<TCoordRep, 3> DirectionType;
typedef itk::Point<TCoordRep, 3> PointType;
typedef TInputImage InputImageType;
typedef typename InputImageType::PixelType PixelType;
typedef typename InputImageType::IndexType IndexType;
/**
* Set the image class
*/
void SetImage(const InputImageType *input)
{
m_Image = input;
}
/**
* Initialise the ray using the position and direction of a line.
*
* \param RayPosn The position of the ray in 3D (mm).
* \param RayDirn The direction of the ray in 3D (mm).
*
* \return True if this is a valid ray.
*/
bool SetRay(OutputPointType RayPosn, DirectionType RayDirn);
/** \brief
* Integrate the interpolated intensities along the ray and
* return the result.
*
* This routine can be called after instantiating the ray and
* calling SetProjectionCoord2D() or Reset(). It may then be called
* as many times thereafter for different 2D projection
* coordinates.
*
* \param integral The integrated intensities along the ray.
*
* \return True if a valid ray was specified.
*/
bool Integrate(double &integral)
{
return IntegrateAboveThreshold(integral, 0);
};
/** \brief
* Integrate the interpolated intensities above a given threshold,
* along the ray and return the result.
*
* This routine can be called after instantiating the ray and
* calling SetProjectionCoord2D() or Reset(). It may then be called
* as many times thereafter for different 2D projection
* coordinates.
*
* \param integral The integrated intensities along the ray.
* \param threshold The integration threshold [default value: 0]
*
* \return True if a valid ray was specified.
*/
bool IntegrateAboveThreshold(double &integral, double threshold);
/** \brief
* Increment each of the intensities of the 4 planar voxels
* surrounding the current ray point.
*
* \parameter increment Intensity increment for each of the current 4 voxels
*/
void IncrementIntensities(double increment=1);
/// Reset the iterator to the start of the ray.
void Reset(void);
/// Return the interpolated intensity of the current ray point.
double GetCurrentIntensity(void) const;
/// Return the ray point spacing in mm
double GetRayPointSpacing(void) const {
typename InputImageType::SpacingType spacing=this->m_Image->GetSpacing();
if (m_ValidRay)
return vcl_sqrt(m_VoxelIncrement[0]*spacing[0]*m_VoxelIncrement[0]*spacing[0]
+ m_VoxelIncrement[1]*spacing[1]*m_VoxelIncrement[1]*spacing[1]
+ m_VoxelIncrement[2]*spacing[2]*m_VoxelIncrement[2]*spacing[2] );
else
return 0.;
};
/// Set the initial zero state of the object
void ZeroState();
/// Initialise the object
void Initialise(void);
protected:
/// Calculate the endpoint coordinats of the ray in voxels.
void EndPointsInVoxels(void);
/**
* Calculate the incremental direction vector in voxels, 'dVoxel',
* required to traverse the ray.
*/
void CalcDirnVector(void);
/**
* Reduce the length of the ray until both start and end
* coordinates lie inside the volume.
*
* \return True if a valid ray has been, false otherwise.
*/
bool AdjustRayLength(void);
/**
* Obtain pointers to the four voxels surrounding the point where the ray
* enters the volume.
*/
void InitialiseVoxelPointers(void);
/// Increment the voxel pointers surrounding the current point on the ray.
void IncrementVoxelPointers(void);
/// Record volume dimensions and resolution
void RecordVolumeDimensions(void);
/// Define the corners of the volume
void DefineCorners(void);
/** \brief
* Calculate the planes which define the volume.
*
* Member function to calculate the equations of the planes of 4 of
* the sides of the volume, calculate the positions of the 8 corners
* of the volume in mm in World, also calculate the values of the
* slopes of the lines which go to make up the volume( defined as
* lines in cube x,y,z dirn and then each of these lines has a slope
* in the world x,y,z dirn [3]) and finally also to return the length
* of the sides of the lines in mm.
*/
void CalcPlanesAndCorners(void);
/** \brief
* Calculate the ray intercepts with the volume.
*
* See where the ray cuts the volume, check that truncation does not occur,
* if not, then start ray where it first intercepts the volume and set
* x_max to be where it leaves the volume.
*
* \return True if a valid ray has been specified, false otherwise.
*/
bool CalcRayIntercepts(void);
/**
* The ray is traversed by stepping in the axial direction
* that enables the greatest number of planes in the volume to be
* intercepted.
*/
typedef enum {
UNDEFINED_DIRECTION=0, //!< Undefined
TRANSVERSE_IN_X, //!< x
TRANSVERSE_IN_Y, //!< y
TRANSVERSE_IN_Z, //!< z
LAST_DIRECTION
} TraversalDirection;
// Cache the image in the structure. Skip the smart pointer for
// efficiency. This inner class will go in/out of scope with every
// call to Evaluate()
const InputImageType *m_Image;
/// Flag indicating whether the current ray is valid
bool m_ValidRay;
/** \brief
* The start position of the ray in voxels.
*
* NB. Two of the components of this coordinate (i.e. those lying within
* the planes of voxels being traversed) will be shifted by half a
* voxel. This enables indices of the neighbouring voxels within the plane
* to be determined by simply casting to 'int' and optionally adding 1.
*/
double m_RayVoxelStartPosition[3];
/** \brief
* The end coordinate of the ray in voxels.
*
* NB. Two of the components of this coordinate (i.e. those lying within
* the planes of voxels being traversed) will be shifted by half a
* voxel. This enables indices of the neighbouring voxels within the plane
* to be determined by simply casting to 'int' and optionally adding 1.
*/
double m_RayVoxelEndPosition[3];
/** \brief
* The current coordinate on the ray in voxels.
*
* NB. Two of the components of this coordinate (i.e. those lying within
* the planes of voxels being traversed) will be shifted by half a
* voxel. This enables indices of the neighbouring voxels within the plane
* to be determined by simply casting to 'int' and optionally adding 1.
*/
double m_Position3Dvox[3];
/** The incremental direction vector of the ray in voxels. */
double m_VoxelIncrement[3];
/// The direction in which the ray is incremented thorough the volume (x, y or z).
TraversalDirection m_TraversalDirection;
/// The total number of planes of voxels traversed by the ray.
int m_TotalRayVoxelPlanes;
/// The current number of planes of voxels traversed by the ray.
int m_NumVoxelPlanesTraversed;
/// Pointers to the current four voxels surrounding the ray's trajectory.
const PixelType *m_RayIntersectionVoxels[4];
/**
* The voxel coordinate of the bottom-left voxel of the current
* four voxels surrounding the ray's trajectory.
*/
int m_RayIntersectionVoxelIndex[3];
/// The dimension in voxels of the 3D volume in along the x axis
int m_NumberOfVoxelsInX;
/// The dimension in voxels of the 3D volume in along the y axis
int m_NumberOfVoxelsInY;
/// The dimension in voxels of the 3D volume in along the z axis
int m_NumberOfVoxelsInZ;
/// Voxel dimension in x
double m_VoxelDimensionInX;
/// Voxel dimension in y
double m_VoxelDimensionInY;
/// Voxel dimension in z
double m_VoxelDimensionInZ;
/// The coordinate of the point at which the ray enters the volume in mm.
double m_RayStartCoordInMM[3];
/// The coordinate of the point at which the ray exits the volume in mm.
double m_RayEndCoordInMM[3];
/** \brief
Planes which define the boundary of the volume in mm
(six planes and four parameters: Ax+By+Cz+D). */
double m_BoundingPlane[6][4];
/// The eight corners of the volume (x,y,z coordinates for each).
double m_BoundingCorner[8][3];
/// The position of the ray
double m_CurrentRayPositionInMM[3];
/// The direction of the ray
double m_RayDirectionInMM[3];
};
/* -----------------------------------------------------------------------
Initialise() - Initialise the object
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::Initialise(void)
{
// Save the dimensions of the volume and calculate the bounding box
this->RecordVolumeDimensions();
// Calculate the planes and corners which define the volume.
this->DefineCorners();
this->CalcPlanesAndCorners();
}
/* -----------------------------------------------------------------------
RecordVolumeDimensions() - Record volume dimensions and resolution
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::RecordVolumeDimensions(void)
{
typename InputImageType::SpacingType spacing=this->m_Image->GetSpacing();
SizeType dim=this->m_Image->GetLargestPossibleRegion().GetSize();
m_NumberOfVoxelsInX = dim[0];
m_NumberOfVoxelsInY = dim[1];
m_NumberOfVoxelsInZ = dim[2];
m_VoxelDimensionInX = spacing[0];
m_VoxelDimensionInY = spacing[1];
m_VoxelDimensionInZ = spacing[2];
}
/* -----------------------------------------------------------------------
DefineCorners() - Define the corners of the volume
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::DefineCorners(void)
{
// Define corner positions as if at the origin
m_BoundingCorner[0][0] =
m_BoundingCorner[1][0] =
m_BoundingCorner[2][0] =
m_BoundingCorner[3][0] = 0;
m_BoundingCorner[4][0] =
m_BoundingCorner[5][0] =
m_BoundingCorner[6][0] =
m_BoundingCorner[7][0] = m_VoxelDimensionInX*m_NumberOfVoxelsInX;
m_BoundingCorner[1][1] =
m_BoundingCorner[3][1] =
m_BoundingCorner[5][1] =
m_BoundingCorner[7][1] = m_VoxelDimensionInY*m_NumberOfVoxelsInY;
m_BoundingCorner[0][1] =
m_BoundingCorner[2][1] =
m_BoundingCorner[4][1] =
m_BoundingCorner[6][1] = 0;
m_BoundingCorner[0][2] =
m_BoundingCorner[1][2] =
m_BoundingCorner[4][2] =
m_BoundingCorner[5][2] =
m_VoxelDimensionInZ*m_NumberOfVoxelsInZ;
m_BoundingCorner[2][2] =
m_BoundingCorner[3][2] =
m_BoundingCorner[6][2] =
m_BoundingCorner[7][2] = 0;
}
/* -----------------------------------------------------------------------
CalcPlanesAndCorners() - Calculate the planes and corners of the volume.
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::CalcPlanesAndCorners(void)
{
int j;
// find the equations of the planes
int c1=0, c2=0, c3=0;
for (j=0; j<6; j++)
{ // loop around for planes
switch (j)
{ // which corners to take
case 0:
c1=1; c2=2; c3=3;
break;
case 1:
c1=4; c2=5; c3=6;
break;
case 2:
c1=5; c2=3; c3=7;
break;
case 3:
c1=2; c2=4; c3=6;
break;
case 4:
c1=1; c2=5; c3=0;
break;
case 5:
c1=3; c2=7; c3=2;
break;
}
double line1x, line1y, line1z;
double line2x, line2y, line2z;
// lines from one corner to another in x,y,z dirns
line1x = m_BoundingCorner[c1][0] - m_BoundingCorner[c2][0];
line2x = m_BoundingCorner[c1][0] - m_BoundingCorner[c3][0];
line1y = m_BoundingCorner[c1][1] - m_BoundingCorner[c2][1];
line2y = m_BoundingCorner[c1][1] - m_BoundingCorner[c3][1];
line1z = m_BoundingCorner[c1][2] - m_BoundingCorner[c2][2];
line2z = m_BoundingCorner[c1][2] - m_BoundingCorner[c3][2];
double A, B, C, D;
// take cross product
A = line1y*line2z - line2y*line1z;
B = line2x*line1z - line1x*line2z;
C = line1x*line2y - line2x*line1y;
// find constant
D = -( A*m_BoundingCorner[c1][0]
+ B*m_BoundingCorner[c1][1]
+ C*m_BoundingCorner[c1][2] );
// initialise plane value and normalise
m_BoundingPlane[j][0] = A/vcl_sqrt(A*A + B*B + C*C);
m_BoundingPlane[j][1] = B/vcl_sqrt(A*A + B*B + C*C);
m_BoundingPlane[j][2] = C/vcl_sqrt(A*A + B*B + C*C);
m_BoundingPlane[j][3] = D/vcl_sqrt(A*A + B*B + C*C);
if ( (A*A + B*B + C*C) == 0 )
{
itk::ExceptionObject err(__FILE__, __LINE__);
err.SetLocation( ITK_LOCATION );
err.SetDescription( "Division by zero (planes) "
"- CalcPlanesAndCorners().");
throw err;
}
}
}
/* -----------------------------------------------------------------------
CalcRayIntercepts() - Calculate the ray intercepts with the volume.
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
bool
RayCastHelper<TInputImage, TCoordRep>
::CalcRayIntercepts()
{
double maxInterDist, interDist;
double cornerVect[4][3];
int cross[4][3], noInterFlag[6];
int nSidesCrossed, crossFlag, c[4];
double ax, ay, az, bx, by, bz;
double cubeInter[6][3];
double denom;
int i,j, k;
int NoSides = 6; // =6 to allow truncation: =4 to remove truncated rays
// Calculate intercept of ray with planes
double interceptx[6], intercepty[6], interceptz[6];
double d[6];
for( j=0; j<NoSides; j++)
{
denom = ( m_BoundingPlane[j][0]*m_RayDirectionInMM[0]
+ m_BoundingPlane[j][1]*m_RayDirectionInMM[1]
+ m_BoundingPlane[j][2]*m_RayDirectionInMM[2]);
if( (long)(denom*100) != 0 )
{
d[j] = -( m_BoundingPlane[j][3]
+ m_BoundingPlane[j][0]*m_CurrentRayPositionInMM[0]
+ m_BoundingPlane[j][1]*m_CurrentRayPositionInMM[1]
+ m_BoundingPlane[j][2]*m_CurrentRayPositionInMM[2] ) / denom;
interceptx[j] = m_CurrentRayPositionInMM[0] + d[j]*m_RayDirectionInMM[0];
intercepty[j] = m_CurrentRayPositionInMM[1] + d[j]*m_RayDirectionInMM[1];
interceptz[j] = m_CurrentRayPositionInMM[2] + d[j]*m_RayDirectionInMM[2];
noInterFlag[j] = 1; //OK
}
else
{
noInterFlag[j] = 0; //NOT OK
}
}
nSidesCrossed = 0;
for( j=0; j<NoSides; j++ )
{
// Work out which corners to use
if( j==0 )
{
c[0] = 0; c[1] = 1; c[2] = 3; c[3] = 2;
}
else if( j==1 )
{
c[0] = 4; c[1] = 5; c[2] = 7; c[3] = 6;
}
else if( j==2 )
{
c[0] = 1; c[1] = 5; c[2] = 7; c[3] = 3;
}
else if( j==3 )
{
c[0] = 0; c[1] = 2; c[2] = 6; c[3] = 4;
}
else if( j==4 )
{ //TOP
c[0] = 0; c[1] = 1; c[2] = 5; c[3] = 4;
}
else if( j==5 )
{ //BOTTOM
c[0] = 2; c[1] = 3; c[2] = 7; c[3] = 6;
}
// Calculate vectors from corner of ct volume to intercept.
for( i=0; i<4; i++ )
{
if( noInterFlag[j]==1 )
{
cornerVect[i][0] = m_BoundingCorner[c[i]][0] - interceptx[j];
cornerVect[i][1] = m_BoundingCorner[c[i]][1] - intercepty[j];
cornerVect[i][2] = m_BoundingCorner[c[i]][2] - interceptz[j];
}
else if( noInterFlag[j]==0 )
{
cornerVect[i][0] = 0;
cornerVect[i][1] = 0;
cornerVect[i][2] = 0;
}
}
// Do cross product with these vectors
for( i=0; i<4; i++ )
{
if( i==3 )
{
k = 0;
}
else
{
k = i+1;
}
ax = cornerVect[i][0];
ay = cornerVect[i][1];
az = cornerVect[i][2];
bx = cornerVect[k][0];
by = cornerVect[k][1];
bz = cornerVect[k][2];
// The int and divide by 100 are to avoid rounding errors. If
// these are not included then you get values fluctuating around
// zero and so in the subsequent check, all the values are not
// above or below zero. NB. If you "INT" by too much here though
// you can get problems in the corners of your volume when rays
// are allowed to go through more than one plane.
cross[i][0] = (int)((ay*bz - az*by)/100);
cross[i][1] = (int)((az*bx - ax*bz)/100);
cross[i][2] = (int)((ax*by - ay*bx)/100);
}
// See if a sign change occured between all these cross products
// if not, then the ray went through this plane
crossFlag=0;
for( i=0; i<3; i++ )
{
if( ( cross[0][i]<=0
&& cross[1][i]<=0
&& cross[2][i]<=0
&& cross[3][i]<=0)
|| ( cross[0][i]>=0
&& cross[1][i]>=0
&& cross[2][i]>=0
&& cross[3][i]>=0) )
{
crossFlag++;
}
}
if( crossFlag==3 && noInterFlag[j]==1 )
{
cubeInter[nSidesCrossed][0] = interceptx[j];
cubeInter[nSidesCrossed][1] = intercepty[j];
cubeInter[nSidesCrossed][2] = interceptz[j];
nSidesCrossed++;
}
} // End of loop over all four planes
m_RayStartCoordInMM[0] = cubeInter[0][0];
m_RayStartCoordInMM[1] = cubeInter[0][1];
m_RayStartCoordInMM[2] = cubeInter[0][2];
m_RayEndCoordInMM[0] = cubeInter[1][0];
m_RayEndCoordInMM[1] = cubeInter[1][1];
m_RayEndCoordInMM[2] = cubeInter[1][2];
if( nSidesCrossed >= 5 )
{
std::cerr << "WARNING: No. of sides crossed equals: " << nSidesCrossed << std::endl;
}
// If 'nSidesCrossed' is larger than 2, this means that the ray goes through
// a corner of the volume and due to rounding errors, the ray is
// deemed to go through more than two planes. To obtain the correct
// start and end positions we choose the two intercept values which
// are furthest from each other.
if( nSidesCrossed >= 3 )
{
maxInterDist = 0;
for( j=0; j<nSidesCrossed-1; j++ )
{
for( k=j+1; k<nSidesCrossed; k++ )
{
interDist = 0;
for( i=0; i<3; i++ )
{
interDist += (cubeInter[j][i] - cubeInter[k][i])*
(cubeInter[j][i] - cubeInter[k][i]);
}
if( interDist > maxInterDist )
{
maxInterDist = interDist;
m_RayStartCoordInMM[0] = cubeInter[j][0];
m_RayStartCoordInMM[1] = cubeInter[j][1];
m_RayStartCoordInMM[2] = cubeInter[j][2];
m_RayEndCoordInMM[0] = cubeInter[k][0];
m_RayEndCoordInMM[1] = cubeInter[k][1];
m_RayEndCoordInMM[2] = cubeInter[k][2];
}
}
}
nSidesCrossed = 2;
}
if (nSidesCrossed == 2 )
{
return true;
}
else
{
return false;
}
}
/* -----------------------------------------------------------------------
SetRay() - Set the position and direction of the ray
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
bool
RayCastHelper<TInputImage, TCoordRep>
::SetRay(OutputPointType RayPosn, DirectionType RayDirn)
{
// Store the position and direction of the ray
typename TInputImage::SpacingType spacing=this->m_Image->GetSpacing();
SizeType dim=this->m_Image->GetLargestPossibleRegion().GetSize();
// we need to translate the _center_ of the volume to the origin
m_NumberOfVoxelsInX = dim[0];
m_NumberOfVoxelsInY = dim[1];
m_NumberOfVoxelsInZ = dim[2];
m_VoxelDimensionInX = spacing[0];
m_VoxelDimensionInY = spacing[1];
m_VoxelDimensionInZ = spacing[2];
m_CurrentRayPositionInMM[0] =
RayPosn[0] + 0.5*m_VoxelDimensionInX*(double)m_NumberOfVoxelsInX;
m_CurrentRayPositionInMM[1] =
RayPosn[1] + 0.5*m_VoxelDimensionInY*(double)m_NumberOfVoxelsInY;
m_CurrentRayPositionInMM[2] =
RayPosn[2] + 0.5*m_VoxelDimensionInZ*(double)m_NumberOfVoxelsInZ;
m_RayDirectionInMM[0] = RayDirn[0];
m_RayDirectionInMM[1] = RayDirn[1];
m_RayDirectionInMM[2] = RayDirn[2];
// Compute the ray path for this coordinate in mm
m_ValidRay = this->CalcRayIntercepts();
if (! m_ValidRay)
{
Reset();
return false;
}
// Convert the start and end coordinates of the ray to voxels
this->EndPointsInVoxels();
/* Calculate the ray direction vector in voxels and hence the voxel
increment required to traverse the ray, and the number of
interpolation points on the ray.
This routine also shifts the coordinate frame by half a voxel for
two of the directional components (i.e. those lying within the
planes of voxels being traversed). */
this->CalcDirnVector();
/* Reduce the length of the ray until both start and end
coordinates lie inside the volume. */
m_ValidRay = this->AdjustRayLength();
// Reset the iterator to the start of the ray.
Reset();
return m_ValidRay;
}
/* -----------------------------------------------------------------------
EndPointsInVoxels() - Convert the endpoints to voxels
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::EndPointsInVoxels(void)
{
m_RayVoxelStartPosition[0] = m_RayStartCoordInMM[0]/m_VoxelDimensionInX;
m_RayVoxelStartPosition[1] = m_RayStartCoordInMM[1]/m_VoxelDimensionInY;
m_RayVoxelStartPosition[2] = m_RayStartCoordInMM[2]/m_VoxelDimensionInZ;
m_RayVoxelEndPosition[0] = m_RayEndCoordInMM[0]/m_VoxelDimensionInX;
m_RayVoxelEndPosition[1] = m_RayEndCoordInMM[1]/m_VoxelDimensionInY;
m_RayVoxelEndPosition[2] = m_RayEndCoordInMM[2]/m_VoxelDimensionInZ;
}
/* -----------------------------------------------------------------------
CalcDirnVector() - Calculate the incremental direction vector in voxels.
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::CalcDirnVector(void)
{
double xNum, yNum, zNum;
// Calculate the number of voxels in each direction
xNum = vcl_fabs(m_RayVoxelStartPosition[0] - m_RayVoxelEndPosition[0]);
yNum = vcl_fabs(m_RayVoxelStartPosition[1] - m_RayVoxelEndPosition[1]);
zNum = vcl_fabs(m_RayVoxelStartPosition[2] - m_RayVoxelEndPosition[2]);
// The direction iterated in is that with the greatest number of voxels
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Iterate in X direction
if( (xNum >= yNum) && (xNum >= zNum) )
{
if( m_RayVoxelStartPosition[0] < m_RayVoxelEndPosition[0] )
{
m_VoxelIncrement[0] = 1;
m_VoxelIncrement[1]
= (m_RayVoxelStartPosition[1]
- m_RayVoxelEndPosition[1])/(m_RayVoxelStartPosition[0]
- m_RayVoxelEndPosition[0]);
m_VoxelIncrement[2]
= (m_RayVoxelStartPosition[2]
- m_RayVoxelEndPosition[2])/(m_RayVoxelStartPosition[0]
- m_RayVoxelEndPosition[0]);
}
else
{
m_VoxelIncrement[0] = -1;
m_VoxelIncrement[1]
= -(m_RayVoxelStartPosition[1]
- m_RayVoxelEndPosition[1])/(m_RayVoxelStartPosition[0]
- m_RayVoxelEndPosition[0]);
m_VoxelIncrement[2]
= -(m_RayVoxelStartPosition[2]
- m_RayVoxelEndPosition[2])/(m_RayVoxelStartPosition[0]
- m_RayVoxelEndPosition[0]);
}
// This section is to alter the start position in order to
// place the center of the voxels in there correct positions,
// rather than placing them at the corner of voxels which is
// what happens if this is not carried out. The reason why
// x has no -0.5 is because this is the direction we are going
// to iterate in and therefore we wish to go from center to
// center rather than finding the surrounding voxels.
m_RayVoxelStartPosition[1] += ( (int)m_RayVoxelStartPosition[0]
- m_RayVoxelStartPosition[0])*m_VoxelIncrement[1]*m_VoxelIncrement[0]
+ 0.5*m_VoxelIncrement[1] - 0.5;
m_RayVoxelStartPosition[2] += ( (int)m_RayVoxelStartPosition[0]
- m_RayVoxelStartPosition[0])*m_VoxelIncrement[2]*m_VoxelIncrement[0]
+ 0.5*m_VoxelIncrement[2] - 0.5;
m_RayVoxelStartPosition[0] = (int)m_RayVoxelStartPosition[0] + 0.5*m_VoxelIncrement[0];
m_TotalRayVoxelPlanes = (int)xNum;
m_TraversalDirection = TRANSVERSE_IN_X;
}
// Iterate in Y direction
else if( (yNum >= xNum) && (yNum >= zNum) )
{
if( m_RayVoxelStartPosition[1] < m_RayVoxelEndPosition[1] )
{
m_VoxelIncrement[1] = 1;
m_VoxelIncrement[0]
= (m_RayVoxelStartPosition[0]
- m_RayVoxelEndPosition[0])/(m_RayVoxelStartPosition[1]
- m_RayVoxelEndPosition[1]);
m_VoxelIncrement[2]
= (m_RayVoxelStartPosition[2]
- m_RayVoxelEndPosition[2])/(m_RayVoxelStartPosition[1]
- m_RayVoxelEndPosition[1]);
}
else
{
m_VoxelIncrement[1] = -1;
m_VoxelIncrement[0]
= -(m_RayVoxelStartPosition[0]
- m_RayVoxelEndPosition[0])/(m_RayVoxelStartPosition[1]
- m_RayVoxelEndPosition[1]);
m_VoxelIncrement[2]
= -(m_RayVoxelStartPosition[2]
- m_RayVoxelEndPosition[2])/(m_RayVoxelStartPosition[1]
- m_RayVoxelEndPosition[1]);
}
m_RayVoxelStartPosition[0] += ( (int)m_RayVoxelStartPosition[1]
- m_RayVoxelStartPosition[1])*m_VoxelIncrement[0]*m_VoxelIncrement[1]
+ 0.5*m_VoxelIncrement[0] - 0.5;
m_RayVoxelStartPosition[2] += ( (int)m_RayVoxelStartPosition[1]
- m_RayVoxelStartPosition[1])*m_VoxelIncrement[2]*m_VoxelIncrement[1]
+ 0.5*m_VoxelIncrement[2] - 0.5;
m_RayVoxelStartPosition[1] = (int)m_RayVoxelStartPosition[1] + 0.5*m_VoxelIncrement[1];
m_TotalRayVoxelPlanes = (int)yNum;
m_TraversalDirection = TRANSVERSE_IN_Y;
}
// Iterate in Z direction
else
{
if( m_RayVoxelStartPosition[2] < m_RayVoxelEndPosition[2] )
{
m_VoxelIncrement[2] = 1;
m_VoxelIncrement[0]
= (m_RayVoxelStartPosition[0]
- m_RayVoxelEndPosition[0])/(m_RayVoxelStartPosition[2]
- m_RayVoxelEndPosition[2]);
m_VoxelIncrement[1]
= (m_RayVoxelStartPosition[1]
- m_RayVoxelEndPosition[1])/(m_RayVoxelStartPosition[2]
- m_RayVoxelEndPosition[2]);
}
else
{
m_VoxelIncrement[2] = -1;
m_VoxelIncrement[0]
= -(m_RayVoxelStartPosition[0]
- m_RayVoxelEndPosition[0])/(m_RayVoxelStartPosition[2]
- m_RayVoxelEndPosition[2]);
m_VoxelIncrement[1]
= -(m_RayVoxelStartPosition[1]
- m_RayVoxelEndPosition[1])/(m_RayVoxelStartPosition[2]
- m_RayVoxelEndPosition[2]);
}
m_RayVoxelStartPosition[0] += ( (int)m_RayVoxelStartPosition[2]
- m_RayVoxelStartPosition[2])*m_VoxelIncrement[0]*m_VoxelIncrement[2]
+ 0.5*m_VoxelIncrement[0] - 0.5;
m_RayVoxelStartPosition[1] += ( (int)m_RayVoxelStartPosition[2]
- m_RayVoxelStartPosition[2])*m_VoxelIncrement[1]*m_VoxelIncrement[2]
+ 0.5*m_VoxelIncrement[1] - 0.5;
m_RayVoxelStartPosition[2] = (int)m_RayVoxelStartPosition[2] + 0.5*m_VoxelIncrement[2];
m_TotalRayVoxelPlanes = (int)zNum;
m_TraversalDirection = TRANSVERSE_IN_Z;
}
}
/* -----------------------------------------------------------------------
AdjustRayLength() - Ensure that the ray lies within the volume
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
bool
RayCastHelper<TInputImage, TCoordRep>
::AdjustRayLength(void)
{
bool startOK, endOK;
int Istart[3];
int Idirn[3];
if (m_TraversalDirection == TRANSVERSE_IN_X)
{
Idirn[0] = 0;
Idirn[1] = 1;
Idirn[2] = 1;
}
else if (m_TraversalDirection == TRANSVERSE_IN_Y)
{
Idirn[0] = 1;
Idirn[1] = 0;
Idirn[2] = 1;
}
else if (m_TraversalDirection == TRANSVERSE_IN_Z)
{
Idirn[0] = 1;
Idirn[1] = 1;
Idirn[2] = 0;
}
else
{
itk::ExceptionObject err(__FILE__, __LINE__);
err.SetLocation( ITK_LOCATION );
err.SetDescription( "The ray traversal direction is unset "
"- AdjustRayLength().");
throw err;
return false;
}
do
{
startOK = false;
endOK = false;
Istart[0] = (int) vcl_floor(m_RayVoxelStartPosition[0]);
Istart[1] = (int) vcl_floor(m_RayVoxelStartPosition[1]);
Istart[2] = (int) vcl_floor(m_RayVoxelStartPosition[2]);
if( (Istart[0] >= 0) && (Istart[0] + Idirn[0] < m_NumberOfVoxelsInX) &&
(Istart[1] >= 0) && (Istart[1] + Idirn[1] < m_NumberOfVoxelsInY) &&
(Istart[2] >= 0) && (Istart[2] + Idirn[2] < m_NumberOfVoxelsInZ) )
{
startOK = true;
}
else
{
m_RayVoxelStartPosition[0] += m_VoxelIncrement[0];
m_RayVoxelStartPosition[1] += m_VoxelIncrement[1];
m_RayVoxelStartPosition[2] += m_VoxelIncrement[2];
m_TotalRayVoxelPlanes--;
}
Istart[0] = (int) vcl_floor(m_RayVoxelStartPosition[0]
+ m_TotalRayVoxelPlanes*m_VoxelIncrement[0]);
Istart[1] = (int) vcl_floor(m_RayVoxelStartPosition[1]
+ m_TotalRayVoxelPlanes*m_VoxelIncrement[1]);
Istart[2] = (int) vcl_floor(m_RayVoxelStartPosition[2]
+ m_TotalRayVoxelPlanes*m_VoxelIncrement[2]);
if( (Istart[0] >= 0) && (Istart[0] + Idirn[0] < m_NumberOfVoxelsInX) &&
(Istart[1] >= 0) && (Istart[1] + Idirn[1] < m_NumberOfVoxelsInY) &&
(Istart[2] >= 0) && (Istart[2] + Idirn[2] < m_NumberOfVoxelsInZ) )
{
endOK = true;
}
else
{
m_TotalRayVoxelPlanes--;
}
} while ( (! (startOK && endOK)) && (m_TotalRayVoxelPlanes > 1) );
return (startOK && endOK);
}
/* -----------------------------------------------------------------------
Reset() - Reset the iterator to the start of the ray.
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::Reset(void)
{
int i;
m_NumVoxelPlanesTraversed = -1;
// If this is a valid ray...
if (m_ValidRay)
{
for (i=0; i<3; i++)
{
m_Position3Dvox[i] = m_RayVoxelStartPosition[i];
}
this->InitialiseVoxelPointers();
}
// otherwise set parameters to zero
else
{
for (i=0; i<3; i++)
{
m_RayVoxelStartPosition[i] = 0.;
}
for (i=0; i<3; i++)
{
m_RayVoxelEndPosition[i] = 0.;
}
for (i=0; i<3; i++)
{
m_VoxelIncrement[i] = 0.;
}
m_TraversalDirection = UNDEFINED_DIRECTION;
m_TotalRayVoxelPlanes = 0;
for (i=0; i<4; i++)
{
m_RayIntersectionVoxels[i] = 0;
}
for (i=0; i<3; i++)
{
m_RayIntersectionVoxelIndex[i] = 0;
}
}
}
/* -----------------------------------------------------------------------
InitialiseVoxelPointers() - Obtain pointers to the first four voxels
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::InitialiseVoxelPointers(void)
{
IndexType index;
int Ix, Iy, Iz;
Ix = (int)(m_RayVoxelStartPosition[0]);
Iy = (int)(m_RayVoxelStartPosition[1]);
Iz = (int)(m_RayVoxelStartPosition[2]);
m_RayIntersectionVoxelIndex[0] = Ix;
m_RayIntersectionVoxelIndex[1] = Iy;
m_RayIntersectionVoxelIndex[2] = Iz;
switch( m_TraversalDirection )
{
case TRANSVERSE_IN_X:
{
if( (Ix >= 0) && (Ix < m_NumberOfVoxelsInX) &&
(Iy >= 0) && (Iy + 1 < m_NumberOfVoxelsInY) &&
(Iz >= 0) && (Iz + 1 < m_NumberOfVoxelsInZ))
{
index[0]=Ix; index[1]=Iy; index[2]=Iz;
m_RayIntersectionVoxels[0]
= this->m_Image->GetBufferPointer() + this->m_Image->ComputeOffset(index);
index[0]=Ix; index[1]=Iy+1; index[2]=Iz;
m_RayIntersectionVoxels[1]
= ( this->m_Image->GetBufferPointer() + this->m_Image->ComputeOffset(index) );
index[0]=Ix; index[1]=Iy; index[2]=Iz+1;
m_RayIntersectionVoxels[2]
= ( this->m_Image->GetBufferPointer() + this->m_Image->ComputeOffset(index) );
index[0]=Ix; index[1]=Iy+1; index[2]=Iz+1;
m_RayIntersectionVoxels[3]
= ( this->m_Image->GetBufferPointer() + this->m_Image->ComputeOffset(index) );
}
else
{
m_RayIntersectionVoxels[0] =
m_RayIntersectionVoxels[1] =
m_RayIntersectionVoxels[2] =
m_RayIntersectionVoxels[3] = NULL;
}
break;
}
case TRANSVERSE_IN_Y:
{
if( (Ix >= 0) && (Ix + 1 < m_NumberOfVoxelsInX) &&
(Iy >= 0) && (Iy < m_NumberOfVoxelsInY) &&
(Iz >= 0) && (Iz + 1 < m_NumberOfVoxelsInZ))
{
index[0]=Ix; index[1]=Iy; index[2]=Iz;
m_RayIntersectionVoxels[0] = ( this->m_Image->GetBufferPointer()
+ this->m_Image->ComputeOffset(index) );
index[0]=Ix+1; index[1]=Iy; index[2]=Iz;
m_RayIntersectionVoxels[1] = ( this->m_Image->GetBufferPointer()
+ this->m_Image->ComputeOffset(index) );
index[0]=Ix; index[1]=Iy; index[2]=Iz+1;
m_RayIntersectionVoxels[2] = ( this->m_Image->GetBufferPointer()
+ this->m_Image->ComputeOffset(index) );
index[0]=Ix+1; index[1]=Iy; index[2]=Iz+1;
m_RayIntersectionVoxels[3] = ( this->m_Image->GetBufferPointer()
+ this->m_Image->ComputeOffset(index) );
}
else
{
m_RayIntersectionVoxels[0]
= m_RayIntersectionVoxels[1]
= m_RayIntersectionVoxels[2]
= m_RayIntersectionVoxels[3] = NULL;
}
break;
}
case TRANSVERSE_IN_Z:
{
if( (Ix >= 0) && (Ix + 1 < m_NumberOfVoxelsInX) &&
(Iy >= 0) && (Iy + 1 < m_NumberOfVoxelsInY) &&
(Iz >= 0) && (Iz < m_NumberOfVoxelsInZ))
{
index[0]=Ix; index[1]=Iy; index[2]=Iz;
m_RayIntersectionVoxels[0] = ( this->m_Image->GetBufferPointer()
+ this->m_Image->ComputeOffset(index) );
index[0]=Ix+1; index[1]=Iy; index[2]=Iz;
m_RayIntersectionVoxels[1] = ( this->m_Image->GetBufferPointer()
+ this->m_Image->ComputeOffset(index) );
index[0]=Ix; index[1]=Iy+1; index[2]=Iz;
m_RayIntersectionVoxels[2] = ( this->m_Image->GetBufferPointer()
+ this->m_Image->ComputeOffset(index) );
index[0]=Ix+1; index[1]=Iy+1; index[2]=Iz;
m_RayIntersectionVoxels[3] = ( this->m_Image->GetBufferPointer()
+ this->m_Image->ComputeOffset(index) );
}
else
{
m_RayIntersectionVoxels[0]
= m_RayIntersectionVoxels[1]
= m_RayIntersectionVoxels[2]
= m_RayIntersectionVoxels[3] = NULL;
}
break;
}
default:
{
itk::ExceptionObject err(__FILE__, __LINE__);
err.SetLocation( ITK_LOCATION );
err.SetDescription( "The ray traversal direction is unset "
"- InitialiseVoxelPointers().");
throw err;
return;
}
}
}
/* -----------------------------------------------------------------------
IncrementVoxelPointers() - Increment the voxel pointers
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::IncrementVoxelPointers(void)
{
double xBefore = m_Position3Dvox[0];
double yBefore = m_Position3Dvox[1];
double zBefore = m_Position3Dvox[2];
m_Position3Dvox[0] += m_VoxelIncrement[0];
m_Position3Dvox[1] += m_VoxelIncrement[1];
m_Position3Dvox[2] += m_VoxelIncrement[2];
int dx = ((int) m_Position3Dvox[0]) - ((int) xBefore);
int dy = ((int) m_Position3Dvox[1]) - ((int) yBefore);
int dz = ((int) m_Position3Dvox[2]) - ((int) zBefore);
m_RayIntersectionVoxelIndex[0] += dx;
m_RayIntersectionVoxelIndex[1] += dy;
m_RayIntersectionVoxelIndex[2] += dz;
int totalRayVoxelPlanes
= dx + dy*m_NumberOfVoxelsInX + dz*m_NumberOfVoxelsInX*m_NumberOfVoxelsInY;
m_RayIntersectionVoxels[0] += totalRayVoxelPlanes;
m_RayIntersectionVoxels[1] += totalRayVoxelPlanes;
m_RayIntersectionVoxels[2] += totalRayVoxelPlanes;
m_RayIntersectionVoxels[3] += totalRayVoxelPlanes;
}
/* -----------------------------------------------------------------------
GetCurrentIntensity() - Get the intensity of the current ray point.
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
double
RayCastHelper<TInputImage, TCoordRep>
::GetCurrentIntensity(void) const
{
double a, b, c, d;
double y, z;
if (! m_ValidRay)
{
return 0;
}
a = (double) (*m_RayIntersectionVoxels[0]);
b = (double) (*m_RayIntersectionVoxels[1] - a);
c = (double) (*m_RayIntersectionVoxels[2] - a);
d = (double) (*m_RayIntersectionVoxels[3] - a - b - c);
switch( m_TraversalDirection )
{
case TRANSVERSE_IN_X:
{
y = m_Position3Dvox[1] - vcl_floor(m_Position3Dvox[1]);
z = m_Position3Dvox[2] - vcl_floor(m_Position3Dvox[2]);
break;
}
case TRANSVERSE_IN_Y:
{
y = m_Position3Dvox[0] - vcl_floor(m_Position3Dvox[0]);
z = m_Position3Dvox[2] - vcl_floor(m_Position3Dvox[2]);
break;
}
case TRANSVERSE_IN_Z:
{
y = m_Position3Dvox[0] - vcl_floor(m_Position3Dvox[0]);
z = m_Position3Dvox[1] - vcl_floor(m_Position3Dvox[1]);
break;
}
default:
{
itk::ExceptionObject err(__FILE__, __LINE__);
err.SetLocation( ITK_LOCATION );
err.SetDescription( "The ray traversal direction is unset "
"- GetCurrentIntensity().");
throw err;
return 0;
}
}
return a + b*y + c*z + d*y*z;
}
/* -----------------------------------------------------------------------
IncrementIntensities() - Increment the intensities of the current ray point
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::IncrementIntensities(double increment)
{
short inc = (short) vcl_floor(increment + 0.5);
if (! m_ValidRay)
{
return;
}
*m_RayIntersectionVoxels[0] += inc;
*m_RayIntersectionVoxels[1] += inc;
*m_RayIntersectionVoxels[2] += inc;
*m_RayIntersectionVoxels[3] += inc;
return;
}
/* -----------------------------------------------------------------------
IntegrateAboveThreshold() - Integrate intensities above a threshold.
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
bool
RayCastHelper<TInputImage, TCoordRep>
::IntegrateAboveThreshold(double &integral, double threshold)
{
double intensity;
// double posn3D_x, posn3D_y, posn3D_z;
integral = 0.;
// Check if this is a valid ray
if (! m_ValidRay)
{
return false;
}
/* Step along the ray as quickly as possible
integrating the interpolated intensities. */
for (m_NumVoxelPlanesTraversed=0;
m_NumVoxelPlanesTraversed<m_TotalRayVoxelPlanes;
m_NumVoxelPlanesTraversed++)
{
intensity = this->GetCurrentIntensity();
if (intensity > threshold)
{
integral += intensity - threshold;
}
this->IncrementVoxelPointers();
}
/* The ray passes through the volume one plane of voxels at a time,
however, if its moving diagonally the ray points will be further
apart so account for this by scaling by the distance moved. */
integral *= this->GetRayPointSpacing();
return true;
}
/* -----------------------------------------------------------------------
ZeroState() - Set the default (zero) state of the object
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastHelper<TInputImage, TCoordRep>
::ZeroState()
{
int i;
m_ValidRay = false;
m_NumberOfVoxelsInX = 0;
m_NumberOfVoxelsInY = 0;
m_NumberOfVoxelsInZ = 0;
m_VoxelDimensionInX = 0;
m_VoxelDimensionInY = 0;
m_VoxelDimensionInZ = 0;
for (i=0; i<3; i++)
{
m_CurrentRayPositionInMM[i] = 0.;
}
for (i=0; i<3; i++)
{
m_RayDirectionInMM[i] = 0.;
}
for (i=0; i<3; i++)
{
m_RayVoxelStartPosition[i] = 0.;
}
for (i=0; i<3; i++)
{
m_RayVoxelEndPosition[i] = 0.;
}
for (i=0; i<3; i++)
{
m_VoxelIncrement[i] = 0.;
}
m_TraversalDirection = UNDEFINED_DIRECTION;
m_TotalRayVoxelPlanes = 0;
m_NumVoxelPlanesTraversed = -1;
for (i=0; i<4; i++)
{
m_RayIntersectionVoxels[i] = 0;
}
for (i=0; i<3; i++)
{
m_RayIntersectionVoxelIndex[i] = 0;
}
}
}; // end of anonymous namespace
namespace itk
{
/**************************************************************************
*
*
* Rest of this code is the actual RayCastInterpolateImageFunction
* class
*
*
**************************************************************************/
/* -----------------------------------------------------------------------
Constructor
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
RayCastInterpolateImageFunction< TInputImage, TCoordRep >
::RayCastInterpolateImageFunction()
{
m_Threshold = 0.;
m_FocalPoint[0] = 0.;
m_FocalPoint[1] = 0.;
m_FocalPoint[2] = 0.;
}
/* -----------------------------------------------------------------------
PrintSelf
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
void
RayCastInterpolateImageFunction< TInputImage, TCoordRep >
::PrintSelf(std::ostream& os, Indent indent) const
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Threshold: " << m_Threshold << std::endl;
os << indent << "FocalPoint: " << m_FocalPoint << std::endl;
os << indent << "Transform: " << m_Transform.GetPointer() << std::endl;
os << indent << "Interpolator: " << m_Interpolator.GetPointer() << std::endl;
}
/* -----------------------------------------------------------------------
Evaluate at image index position
----------------------------------------------------------------------- */
template<class TInputImage, class TCoordRep>
typename RayCastInterpolateImageFunction< TInputImage, TCoordRep >
::OutputType
RayCastInterpolateImageFunction< TInputImage, TCoordRep >
::Evaluate( const PointType& point ) const
{
double integral = 0;
OutputPointType transformedFocalPoint
= m_Transform->TransformPoint( m_FocalPoint );
DirectionType direction = transformedFocalPoint - point;
RayCastHelper<TInputImage, TCoordRep> ray;
ray.SetImage( this->m_Image );
ray.ZeroState();
ray.Initialise();
ray.SetRay(point, direction);
ray.IntegrateAboveThreshold(integral, m_Threshold);
return ( static_cast<OutputType>( integral ));
}
template<class TInputImage, class TCoordRep>
typename RayCastInterpolateImageFunction< TInputImage, TCoordRep >
::OutputType
RayCastInterpolateImageFunction< TInputImage, TCoordRep >
::EvaluateAtContinuousIndex( const ContinuousIndexType& index ) const
{
OutputPointType point;
this->m_Image->TransformContinuousIndexToPhysicalPoint(index, point);
return this->Evaluate( point );
}
} // namespace itk
#endif
|