/usr/include/InsightToolkit/Algorithms/itkThresholdSegmentationLevelSetFunction.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkThresholdSegmentationLevelSetFunction.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkThresholdSegmentationLevelSetFunction_h
#define __itkThresholdSegmentationLevelSetFunction_h
#include "itkSegmentationLevelSetFunction.h"
#include "itkNumericTraits.h"
namespace itk {
/** \class ThresholdSegmentationLevelSetFunction
*
* \brief This function is used in ThresholdSegmentationLevelSetImageFilter to
* segment structures in images based on intensity values.
*
* \par SegmentationLevelSetFunction is a subclass of the generic LevelSetFunction.
* It is useful for segmentations based on intensity values in an image. It works
* by constructing a speed term (feature image) with positive values inside an
* intensity window (between a low and high threshold) and negative values
* outside that intensity window. The evolving level set front will lock onto
* regions that are at the edges of the intensity window.
*
* You may optionally add a Laplacian calculation on the image to the
* threshold-based speed term by setting the EdgeWeight parameter to a
* non-zero value. The Laplacian term will cause the evolving surface to
* be more strongly attracted to image edges. Several parameters control a
* preprocessing FeatureImage smoothing stage applied only to the Laplacian
* calculation.
*
* \par
* Image \f$ f \f$ is thresholded pixel by pixel using upper threshold
* \f$ U \f$ and lower threshold \f$ L \f$ according to the following formula.
*
* \par
* \f$ f(x) = \left\{ \begin{array}{ll} g(x) - L & \mbox{if $(g)x < (U-L)/2 + L$} \\ U - g(x) & \mbox{otherwise} \end{array} \right. \f$
*
* \sa SegmentationLevelSetImageFunction
* \sa ThresholdSegmentationLevelSetImageFilter */
template <class TImageType, class TFeatureImageType = TImageType>
class ITK_EXPORT ThresholdSegmentationLevelSetFunction
: public SegmentationLevelSetFunction<TImageType, TFeatureImageType>
{
public:
/** Standard class typedefs. */
typedef ThresholdSegmentationLevelSetFunction Self;
typedef SegmentationLevelSetFunction<TImageType, TFeatureImageType>
Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
typedef TFeatureImageType FeatureImageType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods) */
itkTypeMacro( ThresholdSegmentationLevelSetFunction, SegmentationLevelSetFunction );
/** Extract some parameters from the superclass. */
typedef typename Superclass::ImageType ImageType;
typedef typename Superclass::ScalarValueType ScalarValueType;
typedef typename Superclass::FeatureScalarType FeatureScalarType;
typedef typename Superclass::RadiusType RadiusType;
/** Extract some parameters from the superclass. */
itkStaticConstMacro(ImageDimension, unsigned int,
Superclass::ImageDimension);
/** Set/Get threshold values */
void SetUpperThreshold(FeatureScalarType f)
{ m_UpperThreshold = f; }
FeatureScalarType GetUpperThreshold() const
{ return m_UpperThreshold; }
void SetLowerThreshold(FeatureScalarType f)
{ m_LowerThreshold = f; }
FeatureScalarType GetLowerThreshold() const
{ return m_LowerThreshold; }
virtual void CalculateSpeedImage();
virtual void Initialize(const RadiusType &r)
{
Superclass::Initialize(r);
this->SetAdvectionWeight( NumericTraits<ScalarValueType>::Zero);
this->SetPropagationWeight(-1.0 * NumericTraits<ScalarValueType>::One);
this->SetCurvatureWeight(NumericTraits<ScalarValueType>::One);
}
/** Set/Get the weight applied to the edge (Laplacian) attractor in the speed
* term function. Zero will turn this term off. */
void SetEdgeWeight(const ScalarValueType p)
{
m_EdgeWeight = p;
}
ScalarValueType GetEdgeWeight() const
{
return m_EdgeWeight;
}
/** Anisotropic diffusion is applied to the FeatureImage before calculatign
* the Laplacian (edge) term. This method sets/gets the smoothing
* conductance. */
void SetSmoothingConductance(const ScalarValueType p)
{
m_SmoothingConductance = p;
}
ScalarValueType GetSmoothingConductance() const
{
return m_SmoothingConductance;
}
/** Anisotropic diffusion is applied to the FeatureImage before calculating
* the Laplacian (edge) term. This method sets/gets the number of diffusion
* iterations. */
void SetSmoothingIterations(const int p)
{
m_SmoothingIterations = p;
}
int GetSmoothingIterations() const
{
return m_SmoothingIterations;
}
/** Anisotropic diffusion is applied to the FeatureImage before calculating
* the Laplacian (edge) term. This method sets/gets the diffusion time
* step. */
void SetSmoothingTimeStep(const ScalarValueType i)
{
m_SmoothingTimeStep = i;
}
ScalarValueType GetSmoothingTimeStep() const
{
return m_SmoothingTimeStep;
}
protected:
ThresholdSegmentationLevelSetFunction()
{
m_UpperThreshold = NumericTraits<FeatureScalarType>::max();
m_LowerThreshold = NumericTraits<FeatureScalarType>::NonpositiveMin();
this->SetAdvectionWeight(0.0);
this->SetPropagationWeight(1.0);
this->SetCurvatureWeight(1.0);
this->SetSmoothingIterations(5);
this->SetSmoothingConductance(0.8);
this->SetSmoothingTimeStep(0.1);
this->SetEdgeWeight(0.0);
}
virtual ~ThresholdSegmentationLevelSetFunction(){}
ThresholdSegmentationLevelSetFunction(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
void PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent );
os << indent << "UpperThreshold: " << m_UpperThreshold << std::endl;
os << indent << "LowerThreshold: " << m_LowerThreshold << std::endl;
os << indent << "EdgeWeight: " << m_EdgeWeight << std::endl;
os << indent << "SmoothingTimeStep: " << m_SmoothingTimeStep << std::endl;
os << indent << "SmoothingIterations: " << m_SmoothingIterations << std::endl;
os << indent << "SmoothingConductance: " << m_SmoothingConductance << std::endl;
}
FeatureScalarType m_UpperThreshold;
FeatureScalarType m_LowerThreshold;
ScalarValueType m_EdgeWeight;
ScalarValueType m_SmoothingConductance;
int m_SmoothingIterations;
ScalarValueType m_SmoothingTimeStep;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkThresholdSegmentationLevelSetFunction.txx"
#endif
#endif
|