/usr/include/InsightToolkit/Common/itkAffineTransform.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkAffineTransform.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkAffineTransform_txx
#define __itkAffineTransform_txx
#include "itkNumericTraits.h"
#include "itkAffineTransform.h"
#include "vnl/algo/vnl_matrix_inverse.h"
namespace itk
{
/** Constructor with default arguments */
template<class TScalarType, unsigned int NDimensions>
AffineTransform<TScalarType, NDimensions>::
AffineTransform(): Superclass(SpaceDimension,ParametersDimension)
{
}
/** Constructor with default arguments */
template<class TScalarType, unsigned int NDimensions>
AffineTransform<TScalarType, NDimensions>::
AffineTransform( unsigned int outputSpaceDimension,
unsigned int parametersDimension ):
Superclass(outputSpaceDimension,parametersDimension)
{
}
/** Constructor with explicit arguments */
template<class TScalarType, unsigned int NDimensions>
AffineTransform<TScalarType, NDimensions>::
AffineTransform(const MatrixType & matrix,
const OutputVectorType & offset):
Superclass(matrix, offset)
{
}
/** Destructor */
template<class TScalarType, unsigned int NDimensions>
AffineTransform<TScalarType, NDimensions>::
~AffineTransform()
{
return;
}
/** Print self */
template<class TScalarType, unsigned int NDimensions>
void
AffineTransform<TScalarType, NDimensions>::
PrintSelf(std::ostream &os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
}
/** Compose with a translation */
template<class TScalarType, unsigned int NDimensions>
void
AffineTransform<TScalarType, NDimensions>::
Translate(const OutputVectorType &trans, bool pre)
{
OutputVectorType newTranslation = this->GetTranslation();
if (pre)
{
newTranslation += this->GetMatrix() * trans;
}
else
{
newTranslation += trans;
}
this->SetVarTranslation(newTranslation);
this->ComputeOffset();
this->Modified();
return;
}
/** Compose with isotropic scaling */
template<class TScalarType, unsigned int NDimensions>
void
AffineTransform<TScalarType, NDimensions>
::Scale(const TScalarType &factor, bool pre)
{
if (pre)
{
MatrixType newMatrix = this->GetMatrix();
newMatrix *= factor;
this->SetVarMatrix(newMatrix);
}
else
{
MatrixType newMatrix = this->GetMatrix();
newMatrix *= factor;
this->SetVarMatrix(newMatrix);
OutputVectorType newTranslation = this->GetTranslation();
newTranslation *= factor;
this->SetVarTranslation(newTranslation);
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
return;
}
/** Compose with anisotropic scaling */
template<class TScalarType, unsigned int NDimensions>
void
AffineTransform<TScalarType, NDimensions>
::Scale(const OutputVectorType &factor, bool pre)
{
MatrixType trans;
unsigned int i, j;
for (i = 0; i < NDimensions; i++)
{
for (j = 0; j < NDimensions; j++)
{
trans[i][j] = 0.0;
}
trans[i][i] = factor[i];
}
if (pre)
{
this->SetVarMatrix( this->GetMatrix() * trans );
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
return;
}
/** Compose with elementary rotation */
template<class TScalarType, unsigned int NDimensions>
void
AffineTransform<TScalarType, NDimensions>
::Rotate(int axis1, int axis2, TScalarType angle, bool pre)
{
MatrixType trans;
unsigned int i, j;
for (i = 0; i < NDimensions; i++)
{
for (j = 0; j < NDimensions; j++)
{
trans[i][j] = 0.0;
}
trans[i][i] = 1.0;
}
trans[axis1][axis1] = vcl_cos(angle);
trans[axis1][axis2] = vcl_sin(angle);
trans[axis2][axis1] = -vcl_sin(angle);
trans[axis2][axis2] = vcl_cos(angle);
if (pre)
{
this->SetVarMatrix( this->GetMatrix() * trans );
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
return;
}
/** Compose with 2D rotation
* \todo Find a way to generate a compile-time error
* is this is used with NDimensions != 2. */
template<class TScalarType, unsigned int NDimensions>
void
AffineTransform<TScalarType, NDimensions>
::Rotate2D(TScalarType angle, bool pre)
{
MatrixType trans;
trans[0][0] = vcl_cos(angle);
trans[0][1] = -vcl_sin(angle);
trans[1][0] = vcl_sin(angle);
trans[1][1] = vcl_cos(angle);
if (pre)
{
this->SetVarMatrix( this->GetMatrix() * trans );
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
return;
}
/** Compose with 3D rotation
* \todo Find a way to generate a compile-time error
* is this is used with NDimensions != 3. */
template<class TScalarType, unsigned int NDimensions>
void
AffineTransform<TScalarType, NDimensions>
::Rotate3D(const OutputVectorType &axis, TScalarType angle, bool pre)
{
MatrixType trans;
ScalarType r, x1, x2, x3;
ScalarType q0, q1, q2, q3;
// Convert the axis to a unit vector
r = vcl_sqrt(axis[0]*axis[0] + axis[1]*axis[1] + axis[2]*axis[2]);
x1 = axis[0] / r;
x2 = axis[1] / r;
x3 = axis[2] / r;
// Compute quaternion elements
q0 = vcl_cos(angle/2.0);
q1 = x1 * vcl_sin(angle/2.0);
q2 = x2 * vcl_sin(angle/2.0);
q3 = x3 * vcl_sin(angle/2.0);
// Compute elements of the rotation matrix
trans[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3;
trans[0][1] = 2.0*(q1*q2 - q0*q3);
trans[0][2] = 2.0*(q1*q3 + q0*q2);
trans[1][0] = 2.0*(q1*q2 + q0*q3);
trans[1][1] = q0*q0 + q2*q2 - q1*q1 - q3*q3;
trans[1][2] = 2.0*(q2*q3 - q0*q1);
trans[2][0] = 2.0*(q1*q3 - q0*q2);
trans[2][1] = 2.0*(q2*q3 + q0*q1);
trans[2][2] = q0*q0 + q3*q3 - q1*q1 - q2*q2;
// Compose rotation matrix with the existing matrix
if (pre)
{
this->SetVarMatrix( this->GetMatrix() * trans );
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
return;
}
/** Compose with elementary rotation */
template<class TScalarType, unsigned int NDimensions>
void
AffineTransform<TScalarType, NDimensions>
::Shear(int axis1, int axis2, TScalarType coef, bool pre)
{
MatrixType trans;
unsigned int i, j;
for (i = 0; i < NDimensions; i++)
{
for (j = 0; j < NDimensions; j++)
{
trans[i][j] = 0.0;
}
trans[i][i] = 1.0;
}
trans[axis1][axis2] = coef;
if (pre)
{
this->SetVarMatrix( this->GetMatrix() * trans );
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
return;
}
/** Get an inverse of this transform. */
template<class TScalarType, unsigned int NDimensions>
bool
AffineTransform<TScalarType, NDimensions>
::GetInverse(Self* inverse) const
{
return this->Superclass::GetInverse(inverse);
}
/** Return an inverse of this transform. */
template<class TScalarType, unsigned int NDimensions>
typename AffineTransform<TScalarType, NDimensions>::InverseTransformBasePointer
AffineTransform<TScalarType, NDimensions>
::GetInverseTransform() const
{
Pointer inv = New();
return this->GetInverse(inv) ? inv.GetPointer() : NULL;
}
/** Compute a distance between two affine transforms */
template<class TScalarType, unsigned int NDimensions>
typename AffineTransform<TScalarType, NDimensions>::ScalarType
AffineTransform<TScalarType, NDimensions>
::Metric(const Self * other) const
{
ScalarType result = 0.0, term;
for (unsigned int i = 0; i < NDimensions; i++)
{
for (unsigned int j = 0; j < NDimensions; j++)
{
term = this->GetMatrix()[i][j] - other->GetMatrix()[i][j];
result += term * term;
}
term = this->GetOffset()[i] - other->GetOffset()[i];
result += term * term;
}
return vcl_sqrt(result);
}
/** Compute a distance between self and the identity transform */
template<class TScalarType, unsigned int NDimensions>
typename AffineTransform<TScalarType, NDimensions>::ScalarType
AffineTransform<TScalarType, NDimensions>
::Metric(void) const
{
ScalarType result = 0.0, term;
for (unsigned int i = 0; i < NDimensions; i++)
{
for (unsigned int j = 0; j < NDimensions; j++)
{
if (i == j)
{
term = this->GetMatrix()[i][j] - 1.0;
}
else
{
term = this->GetMatrix()[i][j];
}
result += term * term;
}
term = this->GetOffset()[i];
result += term * term;
}
return vcl_sqrt(result);
}
} // namespace
#endif
|