/usr/include/InsightToolkit/Common/itkAnnulusOperator.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkAnnulusOperator.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkAnnulusOperator_txx
#define __itkAnnulusOperator_txx
#include "itkAnnulusOperator.h"
#include "itkMath.h"
#include "itkSphereSpatialFunction.h"
namespace itk
{
/** Create the operator */
template <class TPixel, unsigned int TDimension, class TAllocator>
void
AnnulusOperator<TPixel, TDimension, TAllocator>
::CreateOperator()
{
CoefficientVector coefficients;
coefficients = this->GenerateCoefficients();
this->Fill(coefficients);
}
/** This function fills the coefficients into the corresponding
* neighborhood. */
template <class TPixel, unsigned int TDimension, class TAllocator>
void
AnnulusOperator <TPixel, TDimension, TAllocator>
::Fill(const CoefficientVector &coeff)
{
typename Superclass::CoefficientVector::const_iterator it;
std::slice* temp_slice;
temp_slice = new std::slice(0, coeff.size(),1);
typename Self::SliceIteratorType data(this, *temp_slice);
delete temp_slice;
it = coeff.begin();
// Copy the coefficients into the neighborhood
for (data = data.Begin(); data < data.End(); ++data, ++it)
{
*data = *it;
}
}
template <class TPixel, unsigned int TDimension, class TAllocator>
typename AnnulusOperator<TPixel, TDimension, TAllocator>
::CoefficientVector
AnnulusOperator<TPixel, TDimension, TAllocator>
::GenerateCoefficients()
{
// Determine the initial kernel values...
double interiorV, annulusV, exteriorV;
if (m_Normalize)
{
double bright = (m_BrightCenter ? 1.0 : -1.0);
// Initial values for a normalized kernel
interiorV = bright;
annulusV = -1.0*bright;
exteriorV = 0.0;
}
else
{
// values for a specified kernel
interiorV = m_InteriorValue;
annulusV = m_AnnulusValue;
exteriorV = m_ExteriorValue;
}
// Compute the size of the kernel in pixels
SizeType r;
unsigned int i, j;
double outerRadius = m_InnerRadius + m_Thickness;
for (i=0; i < TDimension; ++i)
{
r[i] = Math::Ceil<SizeValueType>(outerRadius / m_Spacing[i]);
}
this->SetRadius(r);
// Use a couple of sphere spatial functions...
typedef SphereSpatialFunction<TDimension> SphereType;
typename SphereType::Pointer innerS = SphereType::New();
typename SphereType::Pointer outerS = SphereType::New();
innerS->SetRadius( m_InnerRadius );
outerS->SetRadius( m_InnerRadius + m_Thickness );
// Walk the neighborhood (this) and evaluate the sphere spatial
// functions
bool inInner, inOuter;
double sumNotExterior = 0.0;
double sumNotExteriorSq = 0.0;
unsigned int countNotExterior = 0;
unsigned int w;
w = this->Size();
std::vector<bool> outside(w);
CoefficientVector coeffP(w);
OffsetType offset;
typename SphereType::InputType point;
for (i=0; i < w; ++i)
{
// get the offset from the center pixel
offset = this->GetOffset(i);
// convert to a position
for (j=0; j < TDimension; ++j)
{
point[j] = m_Spacing[j] * offset[j];
}
// evaluate the spheres
inInner = innerS->Evaluate(point);
inOuter = outerS->Evaluate(point);
// set the coefficients
if (!inOuter)
{
// outside annulus
coeffP[i] = exteriorV;
outside[i] = true;
}
else if (!inInner)
{
// inside the outer circle but outside the inner circle
coeffP[i] = annulusV;
sumNotExterior += annulusV;
sumNotExteriorSq += (annulusV*annulusV);
countNotExterior++;
outside[i] = false;
}
else
{
// inside inner circle
coeffP[i] = interiorV;
sumNotExterior += interiorV;
sumNotExteriorSq += (interiorV*interiorV);
countNotExterior++;
outside[i] = false;
}
}
// Normalize the kernel if necessary
if (m_Normalize)
{
// Calculate the mean and standard deviation of kernel values NOT
// the exterior
double num = static_cast<double>(countNotExterior);
double mean = sumNotExterior / num;
double var = ( sumNotExteriorSq - ( sumNotExterior*sumNotExterior / num ) )
/ ( num - 1.0 );
double std = vcl_sqrt(var);
// convert std to a scaling factor k such that
//
// || (coeffP - mean) / k || = 1.0
//
double k = std * vcl_sqrt(num-1.0);
// Run through the kernel again, shifting and normalizing the
// elements that are not exterior to the annulus. This forces the
// kernel to have mean zero and norm 1 AND forces the region
// outside the annulus to have no influence.
for (i=0; i < w; ++i)
{
// normalize the coefficient if it is inside the outer circle
// (exterior to outer circle is already zero)
if (!outside[i])
{
coeffP[i] = (coeffP[i] - mean) / k;
}
}
}
return coeffP;
}
} // namespace itk
#endif
|