/usr/include/InsightToolkit/Common/itkCovariantVector.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkCovariantVector.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkCovariantVector_h
#define __itkCovariantVector_h
#include "itkFixedArray.h"
#include "vnl/vnl_vector_ref.h"
#include "itkIndent.h"
#include "itkVector.h"
namespace itk
{
/** \class CovariantVector
* \brief A templated class holding a n-Dimensional covariant vector.
*
* CovariantVector is a templated class that holds a single vector
* (i.e., an array of values). CovariantVector can be used as the data
* type held at each pixel in an Image or at each vertex of an Mesh.
* The template parameter T can be any data type that behaves like a
* primitive (or atomic) data type (int, short, float, complex).
* The NVectorDimension defines the number of components in the vector array.
*
* CovariantVector is not a dynamically extendible array like std::vector. It is
* intended to be used like a mathematical vector.
*
* If you wish a simpler pixel types, you can use Scalar, which represents
* a single data value at a pixel. There is also the more complex type
* ScalarCovariantVector, which supports (for a given pixel)
* a single scalar value plus an array of vector values.
* (The scalar and vectors can be of different data type.)
*
* CovariantVector is the type that should be used for representing normals
* to surfaces and gradients of functions. AffineTransform transform
* covariant vectors different than vectors.
*
* \ingroup Geometry
* \ingroup DataRepresentation
*
* \sa Image
* \sa Mesh
* \sa Point
* \sa Vector
* \sa Matrix
*/
template<class T, unsigned int NVectorDimension=3>
class ITK_EXPORT CovariantVector : public FixedArray<T,NVectorDimension>
{
public:
/** Standard class typedefs. */
typedef CovariantVector Self;
typedef FixedArray<T,NVectorDimension> Superclass;
/** ValueType can be used to declare a variable that is the same type
* as a data element held in an CovariantVector. */
typedef T ValueType;
typedef typename NumericTraits< ValueType >::RealType RealValueType;
/** Dimension of the Space */
itkStaticConstMacro(Dimension, unsigned int, NVectorDimension);
/** I am a covariant vector. */
typedef Self CovariantVectorType;
/** The Array type from which this CovariantVector is derived. */
typedef FixedArray<T, NVectorDimension> BaseArray;
/** Get the dimension (size) of the vector. */
static unsigned int GetCovariantVectorDimension()
{ return NVectorDimension; }
/** Set a vnl_vector_ref referencing the same memory block. */
void SetVnlVector( const vnl_vector<T> & );
/** Get a vnl_vector_ref referencing the same memory block. */
vnl_vector_ref<T> GetVnlVector( void );
/** Get a vnl_vector with a copy of the internal memory block. */
vnl_vector<T> GetVnlVector( void ) const;
/** Set a vnl_vector_ref referencing the same memory block.
* \deprecated Use SetVnlVector() instead. */
void Set_vnl_vector( const vnl_vector<T> & );
/** Get a vnl_vector_ref referencing the same memory block.
* \deprecated Use GetVnlVector() instead. */
vnl_vector_ref<T> Get_vnl_vector( void );
/** Get a vnl_vector with a copy of the internal memory block.
* \deprecated Use GetVnlVector() instead. */
vnl_vector<T> Get_vnl_vector( void ) const;
/** Default constructor and copy constructors. */
CovariantVector(): BaseArray() {}
CovariantVector(const ValueType& r);
/** Pass-through constructor for the Array base class. Implicit casting is
* performed to initialize constructor from any another one of datatype. */
template< class TVectorValueType >
CovariantVector(const CovariantVector< TVectorValueType,
NVectorDimension>& r): BaseArray(r) {}
CovariantVector(const ValueType r[Dimension]): BaseArray(r) {}
/** Assignment operator with implicit casting from another data type */
template< class Tt >
Self & operator= (const Tt & v )
{
BaseArray::operator=(v);
return *this;
}
/** Pass-through assignment operator for the Array base class. */
CovariantVector& operator= (const Self& r);
CovariantVector& operator= (const ValueType r[NVectorDimension]);
/** Scalar operator*=. Scales elements by a scalar. */
template< class Tt > inline const Self& operator*=(const Tt &value)
{
for( unsigned int i=0; i<NVectorDimension; i++)
{
(*this)[i] = static_cast< ValueType >((*this)[i] * value);
}
return *this;
}
/** Scalar operator/=. Scales (divides) elements by a scalar. */
template< class Tt > const Self& operator/=(const Tt &value)
{
for( unsigned int i=0; i<NVectorDimension; i++)
{
(*this)[i] = static_cast< ValueType >((*this)[i] / value);
}
return *this;
}
/** CovariantVector operator+=. Adds a vectors to the current vector. */
const Self& operator+=(const Self &vec);
/** CovariantVector operator-=. Subtracts a vector from a current vector. */
const Self& operator-=(const Self &vec);
/** CovariantVector negation. Negate all the elements of a vector.
* Return a new vector */
Self operator-() const;
/** CovariantVector addition. Add two vectors. Return a new vector. */
Self operator+(const Self &vec) const;
/** CovariantVector subtraction. Subtract two vectors. Return a new vector. */
Self operator-(const Self &vec) const;
/** CovariantVector operator*.
* Performs the inner product of two covariant vectors.
* \warning This is equivalent to the scalar product only if the reference
* system has orthogonal axis and equal scales. */
ValueType operator*(const Self &vec) const;
/** operator*. Performs the scalar product with a vector (contravariant).
* This scalar product is invariant under affine transformations */
ValueType operator*(const Vector<T,NVectorDimension> &vec) const;
/** Scalar operator*. Scale the elements of a vector by a scalar.
* Return a new vector. */
inline Self operator*(const ValueType& val) const
{
Self result;
for( unsigned int i=0; i<NVectorDimension; i++)
{
result[i] = static_cast< ValueType >((*this)[i] * val);
}
return result;
}
/** Scalar operator/. Scale (divide) the elements of a vector by a scalar.
* Return a new vector. */
template< class Tt > inline Self operator/(const Tt& val) const
{
Self result;
for( unsigned int i=0; i<NVectorDimension; i++)
{
result[i] = static_cast< ValueType >((*this)[i] / val);
}
return result;
}
/** Returns the Euclidean Norm of the vector */
RealValueType GetNorm( void ) const;
/** Returns the number of components in this vector type */
static unsigned int GetNumberOfComponents() { return NVectorDimension; }
/** Divides the covariant vector componets by the norm */
void Normalize(void);
/** Returns vector's Squared Euclidean Norm */
RealValueType GetSquaredNorm( void ) const;
/** Copy from another CovariantVector with a different representation type.
* Casting is done with C-Like rules */
template < typename TCoordRepB >
void CastFrom( const CovariantVector<TCoordRepB,NVectorDimension> & pa )
{
for(unsigned int i=0; i<NVectorDimension; i++ )
{
(*this)[i] = static_cast<T>( pa[i] );
}
}
};
/** Premultiply Operator for product of a vector and a scalar.
* CovariantVector< T, N > = T * CovariantVector< T,N > */
template< class T, unsigned int NVectorDimension >
inline
CovariantVector<T,NVectorDimension>
operator*(const T &scalar, const CovariantVector<T,NVectorDimension> & v)
{
return v * scalar;
}
ITKCommon_EXPORT void CrossProduct( CovariantVector<double,3> &,
const Vector<double,3> &,
const Vector<double,3> & );
ITKCommon_EXPORT void CrossProduct( CovariantVector<float,3> &,
const Vector<float,3> &,
const Vector<float,3> & );
ITKCommon_EXPORT void CrossProduct( CovariantVector<int,3>,
const Vector<int,3> &,
const Vector<int,3> & );
} // end namespace itk
// Define instantiation macro for this template.
#define ITK_TEMPLATE_CovariantVector(_, EXPORT, x, y) namespace itk { \
_(2(class EXPORT CovariantVector< ITK_TEMPLATE_2 x >)) \
namespace Templates { typedef CovariantVector< ITK_TEMPLATE_2 x > \
CovariantVector##y; } \
}
#if ITK_TEMPLATE_EXPLICIT
# include "Templates/itkCovariantVector+-.h"
#endif
#if ITK_TEMPLATE_TXX
#include "itkNumericTraitsCovariantVectorPixel.h"
# include "itkCovariantVector.txx"
#endif
#endif
|