/usr/include/InsightToolkit/Common/itkEuler3DTransform.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkEuler3DTransform.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkEuler3DTransform_txx
#define __itkEuler3DTransform_txx
#include "itkEuler3DTransform.h"
namespace itk
{
// Constructor with default arguments
template <class TScalarType>
Euler3DTransform<TScalarType>
::Euler3DTransform():
Superclass(SpaceDimension, ParametersDimension)
{
m_ComputeZYX = false;
m_AngleX = m_AngleY = m_AngleZ = NumericTraits<ScalarType>::Zero;
}
// Constructor with default arguments
template <class TScalarType>
Euler3DTransform<TScalarType>
::Euler3DTransform(const MatrixType & matrix,
const OutputPointType & offset)
{
m_ComputeZYX = false;
this->SetMatrix(matrix);
OffsetType off;
off[0] = offset[0];
off[1] = offset[1];
off[2] = offset[2];
this->SetOffset(off);
}
// Constructor with arguments
template <class TScalarType>
Euler3DTransform<TScalarType>
::Euler3DTransform(unsigned int spaceDimension,
unsigned int parametersDimension):
Superclass(spaceDimension, parametersDimension)
{
m_ComputeZYX = false;
m_AngleX = m_AngleY = m_AngleZ = NumericTraits<ScalarType>::Zero;
}
// Set Angles
template <class TScalarType>
void
Euler3DTransform<TScalarType>
::SetVarRotation(ScalarType angleX, ScalarType angleY, ScalarType angleZ)
{
this->m_AngleX = angleX;
this->m_AngleY = angleY;
this->m_AngleZ = angleZ;
}
// Set Parameters
template <class TScalarType>
void
Euler3DTransform<TScalarType>
::SetParameters( const ParametersType & parameters )
{
itkDebugMacro( << "Setting parameters " << parameters );
// Set angles with parameters
m_AngleX = parameters[0];
m_AngleY = parameters[1];
m_AngleZ = parameters[2];
this->ComputeMatrix();
// Transfer the translation part
OutputVectorType newTranslation;
newTranslation[0] = parameters[3];
newTranslation[1] = parameters[4];
newTranslation[2] = parameters[5];
this->SetVarTranslation(newTranslation);
this->ComputeOffset();
// Modified is always called since we just have a pointer to the
// parameters and cannot know if the parameters have changed.
this->Modified();
itkDebugMacro(<<"After setting parameters ");
}
// Get Parameters
template <class TScalarType>
const typename Euler3DTransform<TScalarType>::ParametersType &
Euler3DTransform<TScalarType>
::GetParameters( void ) const
{
this->m_Parameters[0] = m_AngleX;
this->m_Parameters[1] = m_AngleY;
this->m_Parameters[2] = m_AngleZ;
this->m_Parameters[3] = this->GetTranslation()[0];
this->m_Parameters[4] = this->GetTranslation()[1];
this->m_Parameters[5] = this->GetTranslation()[2];
return this->m_Parameters;
}
// Set Rotational Part
template <class TScalarType>
void
Euler3DTransform<TScalarType>
::SetRotation(ScalarType angleX,ScalarType angleY,ScalarType angleZ)
{
m_AngleX = angleX;
m_AngleY = angleY;
m_AngleZ = angleZ;
this->ComputeMatrix();
this->ComputeOffset();
}
// Compose
template <class TScalarType>
void
Euler3DTransform<TScalarType>
::SetIdentity(void)
{
Superclass::SetIdentity();
m_AngleX = 0;
m_AngleY = 0;
m_AngleZ = 0;
}
// Compute angles from the rotation matrix
template <class TScalarType>
void
Euler3DTransform<TScalarType>
::ComputeMatrixParameters(void)
{
if(m_ComputeZYX)
{
m_AngleY = -vcl_asin(this->GetMatrix()[2][0]);
double C = vcl_cos(m_AngleY);
if(vcl_fabs(C)>0.00005)
{
double x = this->GetMatrix()[2][2] / C;
double y = this->GetMatrix()[2][1] / C;
m_AngleX = vcl_atan2(y,x);
x = this->GetMatrix()[0][0] / C;
y = this->GetMatrix()[1][0] / C;
m_AngleZ = vcl_atan2(y,x);
}
else
{
m_AngleX = NumericTraits< ScalarType >::Zero;
double x = this->GetMatrix()[1][1];
double y = -this->GetMatrix()[0][1];
m_AngleZ = vcl_atan2(y,x);
}
}
else
{
m_AngleX = vcl_asin(this->GetMatrix()[2][1]);
double A = vcl_cos(m_AngleX);
if(vcl_fabs(A)>0.00005)
{
double x = this->GetMatrix()[2][2] / A;
double y = -this->GetMatrix()[2][0] / A;
m_AngleY = vcl_atan2(y,x);
x = this->GetMatrix()[1][1] / A;
y = -this->GetMatrix()[0][1] / A;
m_AngleZ = vcl_atan2(y,x);
}
else
{
m_AngleZ = NumericTraits< ScalarType >::Zero;
double x = this->GetMatrix()[0][0];
double y = this->GetMatrix()[1][0];
m_AngleY = vcl_atan2(y,x);
}
}
this->ComputeMatrix();
}
// Compute the matrix
template <class TScalarType>
void
Euler3DTransform<TScalarType>
::ComputeMatrix( void )
{
// need to check if angles are in the right order
const ScalarType cx = vcl_cos(m_AngleX);
const ScalarType sx = vcl_sin(m_AngleX);
const ScalarType cy = vcl_cos(m_AngleY);
const ScalarType sy = vcl_sin(m_AngleY);
const ScalarType cz = vcl_cos(m_AngleZ);
const ScalarType sz = vcl_sin(m_AngleZ);
const ScalarType one = NumericTraits< ScalarType >::One;
const ScalarType zero = NumericTraits< ScalarType >::Zero;
Matrix<TScalarType,3,3> RotationX;
RotationX[0][0]=one; RotationX[0][1]=zero; RotationX[0][2]=zero;
RotationX[1][0]=zero; RotationX[1][1]=cx; RotationX[1][2]=-sx;
RotationX[2][0]=zero; RotationX[2][1]=sx; RotationX[2][2]=cx;
Matrix<TScalarType,3,3> RotationY;
RotationY[0][0]=cy; RotationY[0][1]=zero; RotationY[0][2]=sy;
RotationY[1][0]=zero; RotationY[1][1]=one; RotationY[1][2]=zero;
RotationY[2][0]=-sy; RotationY[2][1]=zero; RotationY[2][2]=cy;
Matrix<TScalarType,3,3> RotationZ;
RotationZ[0][0]=cz; RotationZ[0][1]=-sz; RotationZ[0][2]=zero;
RotationZ[1][0]=sz; RotationZ[1][1]=cz; RotationZ[1][2]=zero;
RotationZ[2][0]=zero; RotationZ[2][1]=zero; RotationZ[2][2]=one;
/** Aply the rotation first around Y then X then Z */
if(m_ComputeZYX)
{
this->SetVarMatrix(RotationZ*RotationY*RotationX);
}
else
{
// Like VTK transformation order
this->SetVarMatrix(RotationZ*RotationX*RotationY);
}
}
// Set parameters
template<class TScalarType>
const typename Euler3DTransform<TScalarType>::JacobianType &
Euler3DTransform<TScalarType>::
GetJacobian( const InputPointType & p ) const
{
// need to check if angles are in the right order
const double cx = vcl_cos(m_AngleX);
const double sx = vcl_sin(m_AngleX);
const double cy = vcl_cos(m_AngleY);
const double sy = vcl_sin(m_AngleY);
const double cz = vcl_cos(m_AngleZ);
const double sz = vcl_sin(m_AngleZ);
this->m_Jacobian.Fill(0.0);
const double px = p[0] - this->GetCenter()[0];
const double py = p[1] - this->GetCenter()[1];
const double pz = p[2] - this->GetCenter()[2];
if ( m_ComputeZYX )
{
this->m_Jacobian[0][0] = (cz*sy*cx+sz*sx)*py+(-cz*sy*sx+sz*cx)*pz;
this->m_Jacobian[1][0] = (sz*sy*cx-cz*sx)*py+(-sz*sy*sx-cz*cx)*pz;
this->m_Jacobian[2][0] = (cy*cx)*py+(-cy*sx)*pz;
this->m_Jacobian[0][1] = (-cz*sy)*px+(cz*cy*sx)*py+(cz*cy*cx)*pz;
this->m_Jacobian[1][1] = (-sz*sy)*px+(sz*cy*sx)*py+(sz*cy*cx)*pz;
this->m_Jacobian[2][1] = (-cy)*px+(-sy*sx)*py+(-sy*cx)*pz;
this->m_Jacobian[0][2] = (-sz*cy)*px+(-sz*sy*sx-cz*cx)*py
+(-sz*sy*cx+cz*sx)*pz;
this->m_Jacobian[1][2] = (cz*cy)*px+(cz*sy*sx-sz*cx)*py+(cz*sy*cx+sz*sx)*pz;
this->m_Jacobian[2][2] = 0;
}
else
{
this->m_Jacobian[0][0] = (-sz*cx*sy)*px + (sz*sx)*py + (sz*cx*cy)*pz;
this->m_Jacobian[1][0] = (cz*cx*sy)*px + (-cz*sx)*py + (-cz*cx*cy)*pz;
this->m_Jacobian[2][0] = (sx*sy)*px + (cx)*py + (-sx*cy)*pz;
this->m_Jacobian[0][1] = (-cz*sy-sz*sx*cy)*px + (cz*cy-sz*sx*sy)*pz;
this->m_Jacobian[1][1] = (-sz*sy+cz*sx*cy)*px + (sz*cy+cz*sx*sy)*pz;
this->m_Jacobian[2][1] = (-cx*cy)*px + (-cx*sy)*pz;
this->m_Jacobian[0][2] = (-sz*cy-cz*sx*sy)*px + (-cz*cx)*py
+ (-sz*sy+cz*sx*cy)*pz;
this->m_Jacobian[1][2] = (cz*cy-sz*sx*sy)*px + (-sz*cx)*py
+ (cz*sy+sz*sx*cy)*pz;
this->m_Jacobian[2][2] = 0;
}
// compute derivatives for the translation part
unsigned int blockOffset = 3;
for(unsigned int dim=0; dim < SpaceDimension; dim++ )
{
this->m_Jacobian[ dim ][ blockOffset + dim ] = 1.0;
}
return this->m_Jacobian;
}
// Print self
template<class TScalarType>
void
Euler3DTransform<TScalarType>::
PrintSelf(std::ostream &os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Euler's angles: AngleX=" << m_AngleX
<< " AngleY=" << m_AngleY
<< " AngleZ=" << m_AngleZ
<< std::endl;
os << indent << "m_ComputeZYX = " << m_ComputeZYX << std::endl;
}
} // namespace
#endif
|