This file is indexed.

/usr/include/InsightToolkit/Common/itkGaussianOperator.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGaussianOperator.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGaussianOperator_h
#define __itkGaussianOperator_h

#include "itkNeighborhoodOperator.h"
#include <math.h>
namespace itk {

/**
 * \class GaussianOperator
 * \brief A NeighborhoodOperator whose coefficients are a one
 * dimensional, discrete Gaussian kernel.
 *
 * GaussianOperator can be used to perform Gaussian blurring
 * by taking its inner product with to a Neighborhood
 * (NeighborhooIterator) that is swept across an image region.
 * It is a directional operator.  N successive applications
 * oriented along each dimensional direction will effect separable,
 * efficient, N-D Gaussian blurring of an image region.
 *
 * GaussianOperator takes two parameters:

 * (1) The floating-point variance of the desired Gaussian function.

 * (2) The "maximum error" allowed in the discrete Gaussian
 * function.  "Maximum errror" is defined as the difference between the area
 * under the discrete Gaussian curve and the area under the continuous
 * Gaussian. Maximum error affects the Gaussian operator size. Care should
 * be taken not to make this value too small relative to the variance
 * lest the operator size become unreasonably large.
 *
 * References:
 * The Gaussian kernel contained in this operator was described
 * by Tony Lindeberg (Discrete Scale-Space Theory and the Scale-Space
 * Primal Sketch.  Dissertation. Royal Institute of Technology, Stockholm,
 * Sweden. May 1991.).
 *
 * \sa NeighborhoodOperator
 * \sa NeighborhoodIterator
 * \sa Neighborhood
 *
 * \ingroup Operators
 */
template<class TPixel,unsigned int VDimension=2,
  class TAllocator = NeighborhoodAllocator<TPixel> >
class ITK_EXPORT GaussianOperator
  : public NeighborhoodOperator<TPixel, VDimension, TAllocator>
{
public:
  /** Standard class typedefs. */
  typedef GaussianOperator                                        Self;
  typedef NeighborhoodOperator<TPixel, VDimension, TAllocator>    Superclass;

  /** Constructor. */
  GaussianOperator() : m_Variance(1), m_MaximumError(.01), m_MaximumKernelWidth(30) { }

  /** Copy constructor */
  GaussianOperator(const Self &other)
    : NeighborhoodOperator<TPixel, VDimension, TAllocator>(other)
    {
    m_Variance = other.m_Variance;
    m_MaximumError = other.m_MaximumError;
    m_MaximumKernelWidth = other.m_MaximumKernelWidth;
    }

  /** Assignment operator */
  Self &operator=(const Self &other)
  {
    Superclass::operator=(other);
    m_Variance = other.m_Variance;
    m_MaximumError = other.m_MaximumError;
    m_MaximumKernelWidth = other.m_MaximumKernelWidth;
    return *this;
  }

  /** Sets the desired variance of the Gaussian kernel. */
  void SetVariance(const double &variance)
    {
    m_Variance = variance;
    }

  /** Sets the desired maximum error of the gaussian approximation.  Maximum
   * error is the difference between the area under the discrete Gaussian curve
   * and the area under the continuous Gaussian. Maximum error affects the
   * Gaussian operator size. The value must be between 0.0 and 1.0. */
  void SetMaximumError(const double &max_error)
    {
    if (max_error >= 1 || max_error <= 0)
      {
      itkExceptionMacro("Maximum Error Must be in the range [ 0.0 , 1.0 ]");
      }

    m_MaximumError = max_error;
    }

  /** Returns the variance of the Gaussian (scale) for the operator. */
  double GetVariance()
    {  return m_Variance;  }

  /** Returns the maximum error of the gaussian approximation.  Maximum error is
   * the difference between the area under the discrete Gaussian curve and the
   * area under the continuous Gaussian. Maximum error affects the Gaussian
   * operator size. */
  double GetMaximumError()
    {    return m_MaximumError;  }

  /** Sets a limit for growth of the kernel.  Small maximum error values with
   *  large variances will yield very large kernel sizes.  This value can be
   *  used to truncate a kernel in such instances.  A warning will be given on
   *  truncation of the kernel. */
  void SetMaximumKernelWidth( unsigned int n )
    {    m_MaximumKernelWidth = n; }

  /** Returns the maximum allowed kernel width. */
  unsigned int GetMaximumKernelWidth() const
    {   return m_MaximumKernelWidth; }

  /** Prints some debugging information. */
  virtual void PrintSelf(std::ostream &os, Indent i) const
  {
    os << i << "GaussianOperator { this=" << this
       << ", m_Variance = " << m_Variance
       << ", m_MaximumError = " << m_MaximumError
       << "} "  << std::endl;
    Superclass::PrintSelf(os, i.GetNextIndent());
  }

protected:
  typedef typename Superclass::CoefficientVector CoefficientVector;

  /** Returns the value of the modified Bessel function I0(x) at a point x >= 0. */
  double ModifiedBesselI0(double);

  /** Returns the value of the modified Bessel function I1(x) at a point x,
   * x real.  */
  double ModifiedBesselI1(double);

  /** Returns the value of the modified Bessel function Ik(x) at a point x>=0,
   * where k>=2. */
  double ModifiedBesselI(int, double);

  /** Calculates operator coefficients. */
  CoefficientVector GenerateCoefficients();

  /** Arranges coefficients spatially in the memory buffer. */
  void Fill(const CoefficientVector& coeff)
  {    this->FillCenteredDirectional(coeff);  }

private:
  /** Desired variance of the discrete Gaussian function. */
  double m_Variance;

  /** Difference between the areas under the curves of the continuous and
   * discrete Gaussian functions. */
  double m_MaximumError;

  /** Maximum kernel size allowed.  This value is used to truncate a kernel
   *  that has grown too large.  A warning is given when the specified maximum
   *  error causes the kernel to exceed this size. */
  unsigned int m_MaximumKernelWidth;

  /** For compatibility with itkWarningMacro */
  const char *GetNameOfClass()
    { return "itkGaussianOperator"; }

};

} // namespace itk

// Define instantiation macro for this template.
#define ITK_TEMPLATE_GaussianOperator(_, EXPORT, x, y) namespace itk { \
  _(2(class EXPORT GaussianOperator< ITK_TEMPLATE_2 x >)) \
  namespace Templates { typedef GaussianOperator< ITK_TEMPLATE_2 x > \
                                                  GaussianOperator##y; } \
  }

#if ITK_TEMPLATE_EXPLICIT
# include "Templates/itkGaussianOperator+-.h"
#endif

#if ITK_TEMPLATE_TXX
# include "itkGaussianOperator.txx"
#endif

#endif