This file is indexed.

/usr/include/InsightToolkit/Common/itkLandmarkBasedTransformInitializer.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkLandmarkBasedTransformInitializer.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkLandmarkBasedTransformInitializer_txx
#define __itkLandmarkBasedTransformInitializer_txx

#include "itkLandmarkBasedTransformInitializer.h"
#include "itkMatrix.h"
#include "itkSymmetricEigenAnalysis.h"

#include <math.h>


namespace itk
{


template < class TTransform, class TFixedImage, class TMovingImage >
LandmarkBasedTransformInitializer< TTransform, TFixedImage, TMovingImage >
::LandmarkBasedTransformInitializer() 
{
}


  
template < class TTransform, class TFixedImage, class TMovingImage >
void 
LandmarkBasedTransformInitializer<TTransform, TFixedImage, TMovingImage >
::InitializeTransform() 
{
  // Sanity check
  if( !m_Transform )
    {
    itkExceptionMacro( "Transform has not been set" );
    return;
    }
  if( m_FixedLandmarks.size() != m_MovingLandmarks.size() )
    {
    itkExceptionMacro("Different number of fixed and moving landmarks");
    return;
    }

  const double PI = 4.0 * vcl_atan(1.0);
  
  // We will do an explicit typeid check here (via dynamic_cast) to check
  // the transform type. The initialization scheme will generally be different
  // based on the transform type and the dimension. As more transforms are
  // supported in future, an explicit typeid check is expected to be done here.
  // Note that the typeid is done via dynamic_cast. This means that as more transforms
  // are added in future, you will have to order your checks from the bottom
  // of the transform hierarchy, upwards.
  //
  InputTransformType  transformType = Else; 
  VersorRigid3DTransformType *testPtr = dynamic_cast< VersorRigid3DTransformType *>(
      this->m_Transform.GetPointer() );
  if( testPtr ) 
    {  
    transformType = VersorRigid3Dtransform;
    }
  else if( dynamic_cast< Rigid2DTransformType *>(this->m_Transform.GetPointer() ))
    {
    transformType = Rigid2Dtransfrom;
    }

  // The returning value of size() must be casted, as it might not be the same type in
  // 32 and 64 bits builds.
  unsigned int numberOfLandmarks = static_cast<unsigned int>(m_FixedLandmarks.size());
  

  // If images come from filters, then update those filters.
  switch( transformType )
    {
    case VersorRigid3Dtransform:
      {
      // Sanity check
      if( FixedImageType::ImageDimension != 3 )
        {
        itkExceptionMacro(
            "Transform is VersorRigid3DTransform and Fixed image dimension is not 3");
        return;
        }
      if( MovingImageType::ImageDimension != 3 )
        {
        itkExceptionMacro(
         "Transform is VersorRigid3DTransform and Moving image dimension is not 3");
        return;
        }
        
      // --- compute the necessary transform to match the two sets of landmarks ---
      //
      // 
      //    The solution is based on
      //    Berthold K. P. Horn (1987),
      //    "Closed-form solution of absolute orientation using unit quaternions,"
      //    Journal of the Optical Society of America A, 4:629-642
      //
      //
      //    Original python implementation by David G. Gobbi
      //    Readpted from the code in VTK: Hybrid/vtkLandmarkTransform
      //
      //----------------------------------------------------------------------------

      VersorRigid3DTransformType *transform = dynamic_cast< VersorRigid3DTransformType *>(
                                                   this->m_Transform.GetPointer() );
      
      typedef typename VersorRigid3DTransformType::OutputVectorType VectorType;
      typedef typename VersorRigid3DTransformType::OutputPointType  PointType;
      typedef typename VersorRigid3DTransformType::CenterType       RotationCenterType;
      

      // Compute the centroids
      PointType fixedCentroid;
      fixedCentroid.Fill(0.0);
      PointsContainerConstIterator fixedItr = m_FixedLandmarks.begin();
      while( fixedItr != m_FixedLandmarks.end() )
        {
        fixedCentroid[0] += (*fixedItr)[0];
        fixedCentroid[1] += (*fixedItr)[1];
        fixedCentroid[2] += (*fixedItr)[2];
        ++fixedItr;
        }

      fixedCentroid[0] /= m_FixedLandmarks.size();
      fixedCentroid[1] /= m_FixedLandmarks.size();
      fixedCentroid[2] /= m_FixedLandmarks.size();

      PointsContainerConstIterator movingItr = m_MovingLandmarks.begin();
      PointType movingCentroid;
      movingCentroid.Fill(0.0);
      while( movingItr != m_MovingLandmarks.end() )
        {
        movingCentroid[0] += (*movingItr)[0];
        movingCentroid[1] += (*movingItr)[1];
        movingCentroid[2] += (*movingItr)[2];
        ++movingItr;
        }

      movingCentroid[0] /= m_MovingLandmarks.size();
      movingCentroid[1] /= m_MovingLandmarks.size();
      movingCentroid[2] /= m_MovingLandmarks.size();


      itkDebugMacro(<< "fixed centroid  = " <<  fixedCentroid);
      itkDebugMacro(<< "moving centroid  = " << movingCentroid);
      
      typedef typename VersorRigid3DTransformType::VersorType VersorType;

      VersorType versor;

      // If we have at least 3 landmarks, we can compute a rotation.
      // Otherwise the versor will be an identity versor.
      if( numberOfLandmarks >= ImageDimension )
        {
        itk::Matrix<double,ImageDimension,ImageDimension> M;

        fixedItr  = m_FixedLandmarks.begin();
        movingItr = m_MovingLandmarks.begin();

        VectorType fixedCentered;
        VectorType movingCentered;

        fixedCentered.Fill( 0.0 );
        movingCentered.Fill( 0.0 );

#if !defined(ITK_LEAN_AND_MEAN) && !defined(__BORLANDC__)
        int ii=0;
#endif
        // Computations are relative to the Center of Rotation.
        while( movingItr != m_MovingLandmarks.end() )
          {
          for(unsigned int i=0; i<ImageDimension; i++)
            {
            fixedCentered[i]  = (*fixedItr)[i]  - fixedCentroid[i];
            movingCentered[i] = (*movingItr)[i] - movingCentroid[i];
            }

          for(unsigned int i=0; i<ImageDimension; i++)
            {
            for(unsigned int j=0; j<ImageDimension; j++)
              {
              // mmm this indices i,j may have to be reverted...
              M[i][j] += fixedCentered[i] * movingCentered[j];
              }
            }
          
#if !defined(ITK_LEAN_AND_MEAN) && !defined(__BORLANDC__)
          ++ii;
          itkDebugMacro(<< "f_" << ii << " = " << fixedCentered );
          itkDebugMacro(<< "m_" << ii << " = " << movingCentered );
#endif
          ++movingItr;
          ++fixedItr;
          }

       // -- build the 4x4 matrix N --
        
        itk::Matrix<double,4,4> N;
        
        // on-diagonal elements
        N[0][0] =  M[0][0] +M[1][1] +M[2][2];
        N[1][1] =  M[0][0] -M[1][1] -M[2][2];
        N[2][2] = -M[0][0] +M[1][1] -M[2][2];
        N[3][3] = -M[0][0] -M[1][1] +M[2][2];
        // off-diagonal elements
        N[0][1] = N[1][0] = M[1][2] -M[2][1];
        N[0][2] = N[2][0] = M[2][0] -M[0][2];
        N[0][3] = N[3][0] = M[0][1] -M[1][0];

        N[1][2] = N[2][1] = M[0][1] +M[1][0];
        N[1][3] = N[3][1] = M[2][0] +M[0][2];
        N[2][3] = N[3][2] = M[1][2] +M[2][1];

       
        itkDebugMacro( << "For Closed form solution: ");
        itkDebugMacro(<< "M matrix " << M );
        itkDebugMacro(<< "N matrix " << N );

        vnl_matrix<double> eigenVectors(4,4);
        vnl_vector<double> eigenValues(4);

        typedef itk::SymmetricEigenAnalysis< 
              itk::Matrix< double,4,4 >,  
              vnl_vector< double >,
              vnl_matrix< double > > SymmetricEigenAnalysisType;
        SymmetricEigenAnalysisType symmetricEigenSystem(4);
        
        symmetricEigenSystem.ComputeEigenValuesAndVectors( N, eigenValues, eigenVectors );

        itkDebugMacro( << "EigenVectors " << eigenVectors);
        itkDebugMacro( << "EigenValues " << eigenValues);

        // By default eigen values are sorted in ascending order.  therefore the maximum
        // eigen value is the one  in the fourth place = index 3. We need the eigen
        // vector associated with the maximum eigenvalue, so we take the eigenvector
        // from the last row, index=3. 

        versor.Set( eigenVectors[3][1],
                    eigenVectors[3][2],
                    eigenVectors[3][3],
                    eigenVectors[3][0]  );
        itkDebugMacro(<< "Resulting versor" << versor);
        }
      else
        {
        // Remember.. 
        // Less than 3 landmarks available. Rotation is not computed 
        }
      
      transform->SetCenter(fixedCentroid);
      transform->SetRotation( versor );

      VectorType translation = transform->GetTranslation(); 
      translation = movingCentroid - fixedCentroid;
      transform->SetTranslation( translation );
 
      break;
      }  
 
      
    case Rigid2Dtransfrom:
      {
      // Sanity check
      if( FixedImageType::ImageDimension != 2 )
        {
        itkExceptionMacro(
            "Transform is Rigid2DTransfrom and Fixed image dimension is not 2");
        return;
        }
      if( MovingImageType::ImageDimension != 2 )
        {
        itkExceptionMacro(
           "Transform is Rigid2DTransform and Moving image dimension is not 2");
        return;
        }
      
      Rigid2DTransformType *transform = dynamic_cast< Rigid2DTransformType *>(
                 this->m_Transform.GetPointer() );
      
      typedef typename Rigid2DTransformType::OutputVectorType VectorType;
      typedef typename Rigid2DTransformType::OutputPointType  PointType;

      //Initialize the transform to identity
      transform->SetIdentity();

      // Compute the centroids
      PointType fixedCentroid;
      fixedCentroid.Fill(0.0);
      PointsContainerConstIterator fixedItr = m_FixedLandmarks.begin();
      while( fixedItr != m_FixedLandmarks.end() )
        {
        fixedCentroid[0] += (*fixedItr)[0];
        fixedCentroid[1] += (*fixedItr)[1];
        ++fixedItr;
        }

      fixedCentroid[0] /= m_FixedLandmarks.size();
      fixedCentroid[1] /= m_FixedLandmarks.size();

      PointsContainerConstIterator movingItr = m_MovingLandmarks.begin();
      PointType movingCentroid;
      movingCentroid.Fill(0.0);
      while( movingItr != m_MovingLandmarks.end() )
        {
        movingCentroid[0] += (*movingItr)[0];
        movingCentroid[1] += (*movingItr)[1];
        ++movingItr;
        }

      movingCentroid[0] /= m_MovingLandmarks.size();
      movingCentroid[1] /= m_MovingLandmarks.size();

      itkDebugMacro(<< "fixed centroid  = " <<  fixedCentroid);
      itkDebugMacro(<< "moving centroid  = " << movingCentroid);
      
      double rotationAngle = 0.0;

      // If we have at least 2 landmarks, we can compute a rotation.
      // Otherwise the rotation matrix will be identity.
      // 
      // For the Rigid2DTransform, the least squares error will be minimized
      // by choosing the offset as the distance between the two centroids,
      // fixed centroid (after having undergone the rotation transform, that
      // we must compute) and the moving centroid. 
      // The rotation angle will be given by the cross and dot products of the
      // fixed and moving landmark vectors, the vectors being computed relative
      // to the fixed and moving centroids.
      if( numberOfLandmarks >= 2 )
        {
        fixedItr  = m_FixedLandmarks.begin();
        movingItr = m_MovingLandmarks.begin();

        VectorType fixedCentered;
        VectorType movingCentered;

        fixedCentered.Fill( 0.0 );
        movingCentered.Fill( 0.0 );

#if !defined(ITK_LEAN_AND_MEAN) && !defined(__BORLANDC__)
        int ii=0;
#endif
        double s_dot   = 0;
        double s_cross = 0;
        // Computations are relative to the Center of Rotation.
        while( movingItr != m_MovingLandmarks.end() )
          {
          fixedCentered[0]  = (*fixedItr)[0]  - fixedCentroid[0];
          movingCentered[0] = (*movingItr)[0] - movingCentroid[0];
          fixedCentered[1]  = (*fixedItr)[1]  - fixedCentroid[1];
          movingCentered[1] = (*movingItr)[1] - movingCentroid[1];
          
          s_dot += (movingCentered[0] * fixedCentered[0]) + 
                   (movingCentered[1] * fixedCentered[1]);
          s_cross += (movingCentered[1] * fixedCentered[0]) - 
                     (movingCentered[0] * fixedCentered[1]);
          
#if !defined(ITK_LEAN_AND_MEAN) && !defined(__BORLANDC__)
          ++ii;
          itkDebugMacro(<< "f_" << ii << " = " << fixedCentered );
          itkDebugMacro(<< "m_" << ii << " = " << movingCentered );
#endif
          ++movingItr;
          ++fixedItr;
          }

        itkDebugMacro(<< "Dot Product of landmarks: " << s_dot << " Cross Product: " << s_cross);
        if( vcl_fabs(s_dot) > 0.00005 )
          {
          rotationAngle = vcl_atan2(s_cross, s_dot);
          }
        else
          {
          rotationAngle = -0.5 * PI;
          }
        } 
      else
        {
        itkWarningMacro(<< "Less than 2 landmarks available. Rotation is not computed");
        }
      
      typename Rigid2DTransformType::Pointer t = Rigid2DTransformType::New();
      t->SetIdentity();
      t->SetAngle( rotationAngle );
       
      transform->SetCenter( fixedCentroid );
      transform->SetAngle( rotationAngle );

      VectorType translation = transform->GetTranslation(); 
      itkDebugMacro(<< "Initial transform translation: " << translation);
      translation = movingCentroid - fixedCentroid;
      itkDebugMacro(<< "translation computed as difference of centroids: " << translation);
      transform->SetTranslation( translation );
 
      break;
      }


        
    case Else:
      itkWarningMacro(<< "Landmark initialization using the specified input transform not implemented");
      m_Transform->SetIdentity();
  
      
    default:
      itkWarningMacro(<< "Landmark initialization using the specified input transform not implemented");
      m_Transform->SetIdentity();
  
    }
  
      
}
  

      

template < class TTransform, class TFixedImage, class TMovingImage >
void 
LandmarkBasedTransformInitializer<TTransform, TFixedImage, TMovingImage >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
     
  os << indent << "Transform   = " << std::endl;
  if (m_Transform)
    { 
    os << indent << m_Transform  << std::endl;
    }
  else
    {
    os << indent << "None" << std::endl;
    }

  os << indent << "FixedImage   = " << std::endl;
  if (m_FixedImage)
    { 
    os << indent << m_FixedImage  << std::endl;
    }
  else
    {
    os << indent << "None" << std::endl;
    }

  os << indent << "MovingImage   = " << std::endl;
  if (m_MovingImage)
    { 
    os << indent << m_MovingImage  << std::endl;
    }
  else
    {
    os << indent << "None" << std::endl;
    }

  os << indent << "Fixed Landmarks: " << std::endl;
  PointsContainerConstIterator fitr = m_FixedLandmarks.begin();
  while( fitr != m_FixedLandmarks.end() )
    {
    os << indent << *fitr << std::endl;
    ++fitr;
    }
  os << indent << "Moving Landmarks: " << std::endl;
  PointsContainerConstIterator mitr = m_MovingLandmarks.begin();
  while( mitr != m_MovingLandmarks.end() )
    {
    os << indent << *mitr << std::endl;
    ++mitr;
    }
    
}
 
}  // namespace itk

#endif /* __itkLandmarkBasedTransformInitializer_txx */