/usr/include/InsightToolkit/Common/itkLandmarkBasedTransformInitializer.txx is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkLandmarkBasedTransformInitializer.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkLandmarkBasedTransformInitializer_txx
#define __itkLandmarkBasedTransformInitializer_txx
#include "itkLandmarkBasedTransformInitializer.h"
#include "itkMatrix.h"
#include "itkSymmetricEigenAnalysis.h"
#include <math.h>
namespace itk
{
template < class TTransform, class TFixedImage, class TMovingImage >
LandmarkBasedTransformInitializer< TTransform, TFixedImage, TMovingImage >
::LandmarkBasedTransformInitializer()
{
}
template < class TTransform, class TFixedImage, class TMovingImage >
void
LandmarkBasedTransformInitializer<TTransform, TFixedImage, TMovingImage >
::InitializeTransform()
{
// Sanity check
if( !m_Transform )
{
itkExceptionMacro( "Transform has not been set" );
return;
}
if( m_FixedLandmarks.size() != m_MovingLandmarks.size() )
{
itkExceptionMacro("Different number of fixed and moving landmarks");
return;
}
const double PI = 4.0 * vcl_atan(1.0);
// We will do an explicit typeid check here (via dynamic_cast) to check
// the transform type. The initialization scheme will generally be different
// based on the transform type and the dimension. As more transforms are
// supported in future, an explicit typeid check is expected to be done here.
// Note that the typeid is done via dynamic_cast. This means that as more transforms
// are added in future, you will have to order your checks from the bottom
// of the transform hierarchy, upwards.
//
InputTransformType transformType = Else;
VersorRigid3DTransformType *testPtr = dynamic_cast< VersorRigid3DTransformType *>(
this->m_Transform.GetPointer() );
if( testPtr )
{
transformType = VersorRigid3Dtransform;
}
else if( dynamic_cast< Rigid2DTransformType *>(this->m_Transform.GetPointer() ))
{
transformType = Rigid2Dtransfrom;
}
// The returning value of size() must be casted, as it might not be the same type in
// 32 and 64 bits builds.
unsigned int numberOfLandmarks = static_cast<unsigned int>(m_FixedLandmarks.size());
// If images come from filters, then update those filters.
switch( transformType )
{
case VersorRigid3Dtransform:
{
// Sanity check
if( FixedImageType::ImageDimension != 3 )
{
itkExceptionMacro(
"Transform is VersorRigid3DTransform and Fixed image dimension is not 3");
return;
}
if( MovingImageType::ImageDimension != 3 )
{
itkExceptionMacro(
"Transform is VersorRigid3DTransform and Moving image dimension is not 3");
return;
}
// --- compute the necessary transform to match the two sets of landmarks ---
//
//
// The solution is based on
// Berthold K. P. Horn (1987),
// "Closed-form solution of absolute orientation using unit quaternions,"
// Journal of the Optical Society of America A, 4:629-642
//
//
// Original python implementation by David G. Gobbi
// Readpted from the code in VTK: Hybrid/vtkLandmarkTransform
//
//----------------------------------------------------------------------------
VersorRigid3DTransformType *transform = dynamic_cast< VersorRigid3DTransformType *>(
this->m_Transform.GetPointer() );
typedef typename VersorRigid3DTransformType::OutputVectorType VectorType;
typedef typename VersorRigid3DTransformType::OutputPointType PointType;
typedef typename VersorRigid3DTransformType::CenterType RotationCenterType;
// Compute the centroids
PointType fixedCentroid;
fixedCentroid.Fill(0.0);
PointsContainerConstIterator fixedItr = m_FixedLandmarks.begin();
while( fixedItr != m_FixedLandmarks.end() )
{
fixedCentroid[0] += (*fixedItr)[0];
fixedCentroid[1] += (*fixedItr)[1];
fixedCentroid[2] += (*fixedItr)[2];
++fixedItr;
}
fixedCentroid[0] /= m_FixedLandmarks.size();
fixedCentroid[1] /= m_FixedLandmarks.size();
fixedCentroid[2] /= m_FixedLandmarks.size();
PointsContainerConstIterator movingItr = m_MovingLandmarks.begin();
PointType movingCentroid;
movingCentroid.Fill(0.0);
while( movingItr != m_MovingLandmarks.end() )
{
movingCentroid[0] += (*movingItr)[0];
movingCentroid[1] += (*movingItr)[1];
movingCentroid[2] += (*movingItr)[2];
++movingItr;
}
movingCentroid[0] /= m_MovingLandmarks.size();
movingCentroid[1] /= m_MovingLandmarks.size();
movingCentroid[2] /= m_MovingLandmarks.size();
itkDebugMacro(<< "fixed centroid = " << fixedCentroid);
itkDebugMacro(<< "moving centroid = " << movingCentroid);
typedef typename VersorRigid3DTransformType::VersorType VersorType;
VersorType versor;
// If we have at least 3 landmarks, we can compute a rotation.
// Otherwise the versor will be an identity versor.
if( numberOfLandmarks >= ImageDimension )
{
itk::Matrix<double,ImageDimension,ImageDimension> M;
fixedItr = m_FixedLandmarks.begin();
movingItr = m_MovingLandmarks.begin();
VectorType fixedCentered;
VectorType movingCentered;
fixedCentered.Fill( 0.0 );
movingCentered.Fill( 0.0 );
#if !defined(ITK_LEAN_AND_MEAN) && !defined(__BORLANDC__)
int ii=0;
#endif
// Computations are relative to the Center of Rotation.
while( movingItr != m_MovingLandmarks.end() )
{
for(unsigned int i=0; i<ImageDimension; i++)
{
fixedCentered[i] = (*fixedItr)[i] - fixedCentroid[i];
movingCentered[i] = (*movingItr)[i] - movingCentroid[i];
}
for(unsigned int i=0; i<ImageDimension; i++)
{
for(unsigned int j=0; j<ImageDimension; j++)
{
// mmm this indices i,j may have to be reverted...
M[i][j] += fixedCentered[i] * movingCentered[j];
}
}
#if !defined(ITK_LEAN_AND_MEAN) && !defined(__BORLANDC__)
++ii;
itkDebugMacro(<< "f_" << ii << " = " << fixedCentered );
itkDebugMacro(<< "m_" << ii << " = " << movingCentered );
#endif
++movingItr;
++fixedItr;
}
// -- build the 4x4 matrix N --
itk::Matrix<double,4,4> N;
// on-diagonal elements
N[0][0] = M[0][0] +M[1][1] +M[2][2];
N[1][1] = M[0][0] -M[1][1] -M[2][2];
N[2][2] = -M[0][0] +M[1][1] -M[2][2];
N[3][3] = -M[0][0] -M[1][1] +M[2][2];
// off-diagonal elements
N[0][1] = N[1][0] = M[1][2] -M[2][1];
N[0][2] = N[2][0] = M[2][0] -M[0][2];
N[0][3] = N[3][0] = M[0][1] -M[1][0];
N[1][2] = N[2][1] = M[0][1] +M[1][0];
N[1][3] = N[3][1] = M[2][0] +M[0][2];
N[2][3] = N[3][2] = M[1][2] +M[2][1];
itkDebugMacro( << "For Closed form solution: ");
itkDebugMacro(<< "M matrix " << M );
itkDebugMacro(<< "N matrix " << N );
vnl_matrix<double> eigenVectors(4,4);
vnl_vector<double> eigenValues(4);
typedef itk::SymmetricEigenAnalysis<
itk::Matrix< double,4,4 >,
vnl_vector< double >,
vnl_matrix< double > > SymmetricEigenAnalysisType;
SymmetricEigenAnalysisType symmetricEigenSystem(4);
symmetricEigenSystem.ComputeEigenValuesAndVectors( N, eigenValues, eigenVectors );
itkDebugMacro( << "EigenVectors " << eigenVectors);
itkDebugMacro( << "EigenValues " << eigenValues);
// By default eigen values are sorted in ascending order. therefore the maximum
// eigen value is the one in the fourth place = index 3. We need the eigen
// vector associated with the maximum eigenvalue, so we take the eigenvector
// from the last row, index=3.
versor.Set( eigenVectors[3][1],
eigenVectors[3][2],
eigenVectors[3][3],
eigenVectors[3][0] );
itkDebugMacro(<< "Resulting versor" << versor);
}
else
{
// Remember..
// Less than 3 landmarks available. Rotation is not computed
}
transform->SetCenter(fixedCentroid);
transform->SetRotation( versor );
VectorType translation = transform->GetTranslation();
translation = movingCentroid - fixedCentroid;
transform->SetTranslation( translation );
break;
}
case Rigid2Dtransfrom:
{
// Sanity check
if( FixedImageType::ImageDimension != 2 )
{
itkExceptionMacro(
"Transform is Rigid2DTransfrom and Fixed image dimension is not 2");
return;
}
if( MovingImageType::ImageDimension != 2 )
{
itkExceptionMacro(
"Transform is Rigid2DTransform and Moving image dimension is not 2");
return;
}
Rigid2DTransformType *transform = dynamic_cast< Rigid2DTransformType *>(
this->m_Transform.GetPointer() );
typedef typename Rigid2DTransformType::OutputVectorType VectorType;
typedef typename Rigid2DTransformType::OutputPointType PointType;
//Initialize the transform to identity
transform->SetIdentity();
// Compute the centroids
PointType fixedCentroid;
fixedCentroid.Fill(0.0);
PointsContainerConstIterator fixedItr = m_FixedLandmarks.begin();
while( fixedItr != m_FixedLandmarks.end() )
{
fixedCentroid[0] += (*fixedItr)[0];
fixedCentroid[1] += (*fixedItr)[1];
++fixedItr;
}
fixedCentroid[0] /= m_FixedLandmarks.size();
fixedCentroid[1] /= m_FixedLandmarks.size();
PointsContainerConstIterator movingItr = m_MovingLandmarks.begin();
PointType movingCentroid;
movingCentroid.Fill(0.0);
while( movingItr != m_MovingLandmarks.end() )
{
movingCentroid[0] += (*movingItr)[0];
movingCentroid[1] += (*movingItr)[1];
++movingItr;
}
movingCentroid[0] /= m_MovingLandmarks.size();
movingCentroid[1] /= m_MovingLandmarks.size();
itkDebugMacro(<< "fixed centroid = " << fixedCentroid);
itkDebugMacro(<< "moving centroid = " << movingCentroid);
double rotationAngle = 0.0;
// If we have at least 2 landmarks, we can compute a rotation.
// Otherwise the rotation matrix will be identity.
//
// For the Rigid2DTransform, the least squares error will be minimized
// by choosing the offset as the distance between the two centroids,
// fixed centroid (after having undergone the rotation transform, that
// we must compute) and the moving centroid.
// The rotation angle will be given by the cross and dot products of the
// fixed and moving landmark vectors, the vectors being computed relative
// to the fixed and moving centroids.
if( numberOfLandmarks >= 2 )
{
fixedItr = m_FixedLandmarks.begin();
movingItr = m_MovingLandmarks.begin();
VectorType fixedCentered;
VectorType movingCentered;
fixedCentered.Fill( 0.0 );
movingCentered.Fill( 0.0 );
#if !defined(ITK_LEAN_AND_MEAN) && !defined(__BORLANDC__)
int ii=0;
#endif
double s_dot = 0;
double s_cross = 0;
// Computations are relative to the Center of Rotation.
while( movingItr != m_MovingLandmarks.end() )
{
fixedCentered[0] = (*fixedItr)[0] - fixedCentroid[0];
movingCentered[0] = (*movingItr)[0] - movingCentroid[0];
fixedCentered[1] = (*fixedItr)[1] - fixedCentroid[1];
movingCentered[1] = (*movingItr)[1] - movingCentroid[1];
s_dot += (movingCentered[0] * fixedCentered[0]) +
(movingCentered[1] * fixedCentered[1]);
s_cross += (movingCentered[1] * fixedCentered[0]) -
(movingCentered[0] * fixedCentered[1]);
#if !defined(ITK_LEAN_AND_MEAN) && !defined(__BORLANDC__)
++ii;
itkDebugMacro(<< "f_" << ii << " = " << fixedCentered );
itkDebugMacro(<< "m_" << ii << " = " << movingCentered );
#endif
++movingItr;
++fixedItr;
}
itkDebugMacro(<< "Dot Product of landmarks: " << s_dot << " Cross Product: " << s_cross);
if( vcl_fabs(s_dot) > 0.00005 )
{
rotationAngle = vcl_atan2(s_cross, s_dot);
}
else
{
rotationAngle = -0.5 * PI;
}
}
else
{
itkWarningMacro(<< "Less than 2 landmarks available. Rotation is not computed");
}
typename Rigid2DTransformType::Pointer t = Rigid2DTransformType::New();
t->SetIdentity();
t->SetAngle( rotationAngle );
transform->SetCenter( fixedCentroid );
transform->SetAngle( rotationAngle );
VectorType translation = transform->GetTranslation();
itkDebugMacro(<< "Initial transform translation: " << translation);
translation = movingCentroid - fixedCentroid;
itkDebugMacro(<< "translation computed as difference of centroids: " << translation);
transform->SetTranslation( translation );
break;
}
case Else:
itkWarningMacro(<< "Landmark initialization using the specified input transform not implemented");
m_Transform->SetIdentity();
default:
itkWarningMacro(<< "Landmark initialization using the specified input transform not implemented");
m_Transform->SetIdentity();
}
}
template < class TTransform, class TFixedImage, class TMovingImage >
void
LandmarkBasedTransformInitializer<TTransform, TFixedImage, TMovingImage >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Transform = " << std::endl;
if (m_Transform)
{
os << indent << m_Transform << std::endl;
}
else
{
os << indent << "None" << std::endl;
}
os << indent << "FixedImage = " << std::endl;
if (m_FixedImage)
{
os << indent << m_FixedImage << std::endl;
}
else
{
os << indent << "None" << std::endl;
}
os << indent << "MovingImage = " << std::endl;
if (m_MovingImage)
{
os << indent << m_MovingImage << std::endl;
}
else
{
os << indent << "None" << std::endl;
}
os << indent << "Fixed Landmarks: " << std::endl;
PointsContainerConstIterator fitr = m_FixedLandmarks.begin();
while( fitr != m_FixedLandmarks.end() )
{
os << indent << *fitr << std::endl;
++fitr;
}
os << indent << "Moving Landmarks: " << std::endl;
PointsContainerConstIterator mitr = m_MovingLandmarks.begin();
while( mitr != m_MovingLandmarks.end() )
{
os << indent << *mitr << std::endl;
++mitr;
}
}
} // namespace itk
#endif /* __itkLandmarkBasedTransformInitializer_txx */
|