/usr/include/InsightToolkit/Common/itkSymmetricEigenAnalysis.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkSymmetricEigenAnalysis.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkSymmetricEigenAnalysis_h
#define __itkSymmetricEigenAnalysis_h
#include "itkMacro.h"
namespace itk
{
/** \class SymmetricEigenAnalysis
* \brief Find Eigen values of a real 2D symmetric matrix. It
* serves as a thread safe alternative to the class:
* vnl_symmetric_eigensystem, which uses netlib routines.
*
* The class is templated over the input matrix, (which is expected to provide
* access to its elements with the [][] operator), matrix to store eigen
* values, (must provide write operations on its elements with the [] operator),
* EigenMatrix to store eigen vectors (must provide write access to its elements
* with the [][] operator).
*
* The SetOrderEigenValues() method can be used to order eigen values (and their
* corresponding eigen vectors if computed) in ascending order. This is the
* default ordering scheme. Eigen vectors and values can be obtained without
* ordering by calling SetOrderEigenValues(false)
*
* The SetOrderEigenMagnitudes() method can be used to order eigen values (and
* their corresponding eigen vectors if computed) by magnitude in ascending order.
*
* The user of this class is explicitly supposed to set the dimension of the
* 2D matrix using the SetDimension() method.
*
* The class contains routines taken from netlib sources. (www.netlib.org).
* netlib/tql1.c
* netlib/tql2.c
* netlib/tred1.c
* netlib/tred2.c
*
* Reference:
* num. math. 11, 293-306(1968) by bowdler, martin, reinsch, and
* wilkinson.
* handbook for auto. comp., vol.ii-linear algebra, 227-240(1971).
*/
template < typename TMatrix, typename TVector, typename TEigenMatrix=TMatrix >
class SymmetricEigenAnalysis
{
public:
typedef enum {
OrderByValue=1,
OrderByMagnitude,
DoNotOrder
}EigenValueOrderType;
SymmetricEigenAnalysis():
m_Dimension(0),
m_Order(0),
m_OrderEigenValues(OrderByValue)
{};
SymmetricEigenAnalysis( const unsigned int dimension ):
m_Dimension(dimension),
m_Order(dimension),
m_OrderEigenValues(OrderByValue)
{};
~SymmetricEigenAnalysis() {};
typedef TMatrix MatrixType;
typedef TEigenMatrix EigenMatrixType;
typedef TVector VectorType;
/** Compute Eigen values of A
* A is any type that overloads the [][] operator and contains the
* symmetric matrix. In practice only the upper triangle of the
* matrix will be accessed. (Both itk::Matrix and vnl_matrix
* overload [][] operator.)
*
* 'EigenValues' is any type that overloads the [] operator and will contain
* the eigen values.
*
* No size checking is performed. A is expected to be a square matrix of size
* m_Dimension. 'EigenValues' is expected to be of length m_Dimension.
* The matrix is not checked to see if it is symmetric.
*/
unsigned int ComputeEigenValues(
const TMatrix & A,
TVector & EigenValues) const;
/** Compute Eigen values and vectors of A
* A is any type that overloads the [][] operator and contains the
* symmetric matrix. In practice only the upper triangle of the
* matrix will be accessed. (Both itk::Matrix and vnl_matrix
* overload [][] operator.)
*
* 'EigenValues' is any type that overloads the [] operator and will contain
* the eigen values.
*
* 'EigenVectors' is any type that provides access to its elements with the
* [][] operator. It is expected be of size m_Dimension * m_Dimension.
*
* No size checking is performed. A is expected to be a square matrix of size
* m_Dimension. 'EigenValues' is expected to be of length m_Dimension.
* The matrix is not checked to see if it is symmetric.
*
* Each row of the matrix 'EigenVectors' represents an eigen vector. (unlike MATLAB
* where the columns of the [EigenVectors, EigenValues] = eig(A) contains the
* eigenvectors).
*/
unsigned int ComputeEigenValuesAndVectors(
const TMatrix & A,
TVector & EigenValues,
TEigenMatrix & EigenVectors ) const;
/** Matrix order. Defaults to matrix dimension if not set */
void SetOrder(const unsigned int n)
{
m_Order = n;
}
/** Get the Matrix order. Will be 0 unless explicitly set, or unless a
* call to SetDimension has been made in which case it will be the
* matrix dimension. */
unsigned int GetOrder() const { return m_Order; }
/** Set/Get methods to order the eigen values in ascending order.
* This is the default. ie lambda_1 < lambda_2 < ....
*/
void SetOrderEigenValues( const bool b )
{
if (b) { m_OrderEigenValues = OrderByValue; }
else { m_OrderEigenValues = DoNotOrder; }
}
bool GetOrderEigenValues() const { return (m_OrderEigenValues == OrderByValue); }
/** Set/Get methods to order the eigen value magnitudes in ascending order.
* In other words, |lambda_1| < |lambda_2| < .....
*/
void SetOrderEigenMagnitudes( const bool b )
{
if (b) { m_OrderEigenValues = OrderByMagnitude; }
else { m_OrderEigenValues = DoNotOrder; }
}
bool GetOrderEigenMagnitudes() const { return (m_OrderEigenValues == OrderByMagnitude); }
/** Set the dimension of the input matrix A. A is a square matrix of
* size m_Dimension. */
void SetDimension( const unsigned int n )
{
m_Dimension = n;
if (m_Order == 0 )
{
m_Order = m_Dimension;
}
}
/** Get Matrix dimension, Will be 0 unless explicitly set by a
* call to SetDimension. */
unsigned int GetDimension() const { return m_Dimension; }
private:
unsigned int m_Dimension;
unsigned int m_Order;
EigenValueOrderType m_OrderEigenValues;
/** Reduces a real symmetric matrix to a symmetric tridiagonal matrix using
* orthogonal similarity transformations.
* 'inputMatrix' contains the real symmetric input matrix. Only the lower
* triangle of the matrix need be supplied. The upper triangle is unaltered.
* 'd' contains the diagonal elements of the tridiagonal matrix.
* 'e' contains the subdiagonal elements of the tridiagonal matrix in its
* last n-1 positions. e(1) is set to zero.
* 'e2' contains the squares of the corresponding elements of e.
* 'e2' may coincide with e if the squares are not needed.
* questions and comments should be directed to burton s. garbow.
* mathematics and computer science div, argonne national laboratory
* this version dated august 1983.
*
* Function Adapted from netlib/tred1.c.
* [Changed: remove static vars, enforce const correctness.
* Use vnl routines as necessary].
* Reference:
* num. math. 11, 181-195(1968) by martin, reinsch, and wilkinson.
* handbook for auto. comp., vol.ii-linear algebra, 212-226(1971). */
void ReduceToTridiagonalMatrix(double *inputMatrix, VectorType &d,
double *e, double *e2) const;
/** Reduces a real symmetric matrix to a symmetric tridiagonal matrix using
* and accumulating orthogonal similarity transformations.
* 'inputMatrix' contains the real symmetric input matrix. Only the lower
* triangle of the matrix need be supplied. The upper triangle is unaltered.
* 'diagonalElements' will contains the diagonal elements of the tridiagonal
* matrix.
* 'subDiagonalElements' will contain the subdiagonal elements of the tridiagonal
* matrix in its last n-1 positions. subDiagonalElements(1) is set to zero.
* 'transformMatrix' contains the orthogonal transformation matrix produced
* in the reduction.
*
* questions and comments should be directed to burton s. garbow.
* mathematics and computer science div, argonne national laboratory
* this version dated august 1983.
*
* Function Adapted from netlib/tred2.c.
* [Changed: remove static vars, enforce const correctness.
* Use vnl routines as necessary].
* Reference:
* num. math. 11, 181-195(1968) by martin, reinsch, and wilkinson.
* handbook for auto. comp., vol.ii-linear algebra, 212-226(1971). */
void ReduceToTridiagonalMatrixAndGetTransformation(
double *inputMatrix, VectorType &diagonalElements,
double *subDiagonalElements, double *transformMatrix) const;
/* Finds the eigenvalues of a symmetric tridiagonal matrix by the ql method.
*
* On input:
* 'd' contains the diagonal elements of the input matrix.
* 'e' contains the subdiagonal elements of the input matrix
* in its last n-1 positions. e(1) is arbitrary.
* On Output:
* 'd' contains the eigenvalues.
* 'e' has been destroyed.
*
* Returns:
* zero for normal return,
* j if the j-th eigenvalue has not been
* determined after 30 iterations.
*
*
* Reference
* this subroutine is a translation of the algol procedure tql1,
* num. math. 11, 293-306(1968) by bowdler, martin, reinsch, and
* wilkinson.
* handbook for auto. comp., vol.ii-linear algebra, 227-240(1971).
*
* Questions and comments should be directed to burton s. garbow,
* mathematics and computer science div, argonne national laboratory
* this version dated august 1983.
*
* Function Adapted from netlib/tql1.c.
* [Changed: remove static vars, enforce const correctness.
* Use vnl routines as necessary] */
unsigned int ComputeEigenValuesUsingQL(
VectorType &d, double *e) const;
/* Finds the eigenvalues and eigenvectors of a symmetric tridiagonal matrix
* by the ql method.
*
* On input:
* 'd' contains the diagonal elements of the input matrix.
* 'e' contains the subdiagonal elements of the input matrix
* in its last n-1 positions. e(1) is arbitrary.
* 'z' contains the transformation matrix produced in the reduction by
* ReduceToTridiagonalMatrixAndGetTransformation(), if performed. If the
* eigenvectors of the tridiagonal matrix are desired, z must contain
* the identity matrix.
* On Output:
* 'd' contains the eigenvalues.
* 'e' has been destroyed.
* 'z' contains orthonormal eigenvectors of the symmetric tridiagonal
* (or full) matrix.
*
* Returns:
* zero for normal return,
* j if the j-th eigenvalue has not been
* determined after 1000 iterations.
*
* Reference
* this subroutine is a translation of the algol procedure tql1,
* num. math. 11, 293-306(1968) by bowdler, martin, reinsch, and
* wilkinson.
* handbook for auto. comp., vol.ii-linear algebra, 227-240(1971).
*
* Questions and comments should be directed to burton s. garbow,
* mathematics and computer science div, argonne national laboratory
* this version dated august 1983.
*
* Function Adapted from netlib/tql2.c.
* [Changed: remove static vars, enforce const correctness.
* Use vnl routines as necessary]
*/
unsigned int ComputeEigenValuesAndVectorsUsingQL(
VectorType &d, double *e, double *z) const;
};
template< typename TMatrix, typename TVector, typename TEigenMatrix >
std::ostream & operator<<(std::ostream& os,
const SymmetricEigenAnalysis< TMatrix, TVector, TEigenMatrix > &s)
{
os << "[ClassType: SymmetricEigenAnalysis]" << std::endl;
os << " Dimension : " << s.GetDimension() << std::endl;
os << " Order : " << s.GetOrder() << std::endl;
os << " OrderEigenValues: " << s.GetOrderEigenValues() << std::endl;
os << " OrderEigenMagnitudes: " << s.GetOrderEigenMagnitudes() << std::endl;
return os;
}
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkSymmetricEigenAnalysis.txx"
#endif
#endif
|