/usr/include/InsightToolkit/Common/itkVariableLengthVector.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkVariableLengthVector.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkVariableLengthVector_h
#define __itkVariableLengthVector_h
#include "itkMacro.h"
#include "itkNumericTraits.h"
namespace itk
{
/** \class VariableLengthVector
* \brief VariableLengthVector is intended to represent an array whose
* length can be defined at run-time.
*
* This class is templated over the data type. This data-type is meant
* to be a scalar, such as float, double etc...
*
* \note
* ITK itself provides several classes that can serve as \c Arrays.
* 1. FixedArray - Compile time fixed length arrays that's intended to
* represent an enumerated collection of \c n entities.
* 2. Array - Run time resizeable array that is intended to hold a collection
* of \c n entities
* 3. Vector - Compile time fixed length array that is intended to hold
* a collection of \c n data types. A vector usually has a mathematical meaning.
* It should only be used when mathematical operations such as addition,
* multiplication by a scalar, product etc make sense.
* 4. VariableLengthVector - Run time array that is intended to hold a collection
* of scalar data types. Again, it should be used only when mathematical
* operations on it are relevant. If not, use an Array.
* 5. Point - Represents the spatial coordinates of a spatial location. Operators
* on Point reflect geometrical concepts.
*
* \par For the reasons listed above, you cannot instantiate
* \code VariableLengthVector< bool > \endcode.
*
* \par
* Design Considerations: We do not derive from \c vnl_vector to avoid being
* limited by the explicit template instantiations of vnl_vector and other
* hacks that vnl folks have been forced to use.
*
* \note
* This work is part of the National Alliance for Medical Image Computing
* (NAMIC), funded by the National Institutes of Health through the NIH Roadmap
* for Medical Research, Grant U54 EB005149.
*
* \sa CovariantVector
* \sa SymmetricSecondRankTensor
* \sa RGBPixel
* \sa DiffusionTensor3D
* \ingroup DataRepresentation
*/
template <typename TValueType >
class VariableLengthVector
{
public:
/** The element type stored at each location in the Array. */
typedef TValueType ValueType;
typedef TValueType ComponentType;
typedef typename NumericTraits< ValueType >::RealType RealValueType;
typedef VariableLengthVector Self;
/** Typedef used to indicate the number of elements in the vector */
typedef unsigned int ElementIdentifier;
/** Default constructor. It is created with an empty array
* it has to be allocated later by assignment */
VariableLengthVector();
/** Constructor with size. Size can only be changed by assignment */
VariableLengthVector(unsigned int dimension);
/** Constructor that initializes array with contents from a user supplied
* buffer. The pointer to the buffer and the length is specified. By default,
* the array does not manage the memory of the buffer. It merely points to
* that location and it is the user's responsibility to delete it.
* If "LetArrayManageMemory" is true, then this class will free the
* memory when this object is destroyed. */
VariableLengthVector( ValueType* data, unsigned int sz,
bool LetArrayManageMemory = false);
/** Constructor that initializes array with contents from a user supplied
* buffer. The pointer to the buffer and the length is specified. By default,
* the array does not manage the memory of the buffer. It merely points to
* that location and it is the user's responsibility to delete it.
* If "LetArrayManageMemory" is true, then this class will free the
* memory when this object is destroyed. */
VariableLengthVector( const ValueType* data, unsigned int sz,
bool LetArrayManageMemory = false);
/** Copy constructor. The reason why the copy constructor and the assignment
* operator are templated is that it will allow implicit casts to be
* performed. For instance
* \code
* VariableLengthVector< int > vI;
* VariableLengthVector< float > vF( vI );
* or for instance vF = static_cast< VariableLengthVector< float > >( vI );
* \endcode
*/
template< class T >
VariableLengthVector(const VariableLengthVector< T > & v)
{
m_NumElements = v.Size();
m_Data = this->AllocateElements(m_NumElements);
m_LetArrayManageMemory = true;
for( ElementIdentifier i=0; i< v.Size(); i++ )
{
this->m_Data[i] = static_cast< ValueType >( v[i] );
}
}
/** Copy constructer.. Override the default non-templated copy constructor
* that the compiler provides */
VariableLengthVector(const VariableLengthVector< TValueType > & v);
/** Set the all the elements of the array to the specified value */
void Fill (TValueType const& v);
/** Assignment operator */
template< class T >
const VariableLengthVector< TValueType > & operator=
(const VariableLengthVector< T > & v)
{
if( m_Data == static_cast< void * >(const_cast< T * >
((const_cast< VariableLengthVector< T > & >(v)).GetDataPointer())) )
{
return *this;
}
this->SetSize( v.Size() );
for( ElementIdentifier i=0; i< v.Size(); i++ )
{
this->m_Data[i] = static_cast< ValueType >( v[i] );
}
return *this;
}
/** Assignment operator */
const Self & operator=(const Self & v);
/** Return the number of elements in the Array */
inline unsigned int Size (void ) const
{ return m_NumElements; }
inline unsigned int GetNumberOfElements(void) const
{ return m_NumElements; }
/** Return reference to the element at specified index. No range checking. */
TValueType & operator[](unsigned int i) { return this->m_Data[i]; }
/** Return reference to the element at specified index. No range checking. */
TValueType const & operator[](unsigned int i) const { return this->m_Data[i]; }
/** Get one element */
inline const TValueType & GetElement( unsigned int i ) const
{ return m_Data[i]; }
/** Set one element */
void SetElement( unsigned int i, const TValueType & value )
{ m_Data[i] = value; }
/** Set the size to that given.
*
* If \c destroyExistingData is \c false:
* If the array already contains data, the existing data is copied over and
* new space is allocated, if necessary. If the length to reserve is less
* than the current number of elements, then an appropriate number of elements
* are discarded.
* If \c true, the size is set destructively to the length given. If the
* length is different from the current length, existing data will be lost.
* The default is \c true. */
void SetSize(unsigned int sz, bool destroyExistingData=true);
inline unsigned int GetSize(void) const
{ return m_NumElements; }
/** Set the pointer from which the data is imported.
* If "LetArrayManageMemory" is false, then the application retains
* the responsibility of freeing the memory for this data. If
* "LetArrayManageMemory" is true, then this class will free the
* memory when this object is destroyed. */
void SetData(TValueType* data,bool LetArrayManageMemory = false);
/** Similar to the previous method. In the above method, the size must be
* seperately set prior to using user-supplied data. This introduces an
* unnecessary allocation step to be performed. This method avoids it
* and should be used to import data whereever possible to avoid this.
* Set the pointer from which the data is imported.
* If "LetArrayManageMemory" is false, then the application retains
* the responsibility of freeing the memory for this data. If
* "LetArrayManageMemory" is true, then this class will free the
* memory when this object is destroyed. */
void SetData(TValueType* data, unsigned int sz, bool LetArrayManageMemory = false);
/** This destructor is not virtual for performance reasons. However, this
* means that subclasses cannot allocate memory. */
~VariableLengthVector();
/** Reserves memory of a certain length.
*
* If the array already contains data, the existing data is copied over and
* new space is allocated, if necessary. If the length to reserve is less
* than the current number of elements, then an appropriate number of elements
* are discarded. */
void Reserve( ElementIdentifier );
/** Allocate memory of certain size and return it. */
TValueType * AllocateElements( ElementIdentifier size ) const;
const TValueType* GetDataPointer() const { return m_Data; }
/** Mathematical operators.
* \note For efficiency, the operators do not check to see of the length of
* the vectors are the same. For instance it is assumed that if you are adding
* VariableLengthVector a and b, they are of the same length. */
template< class T >
inline Self operator+(const VariableLengthVector< T > &v) const
{
// if( m_NumElements != v.GetSize() )
// {
// itkGenericExceptionMacro( << "Cannot add VariableLengthVector of length "
// << m_NumElements " and " << v.GetSize() );
// }
const ElementIdentifier length = v.Size();
Self result( length );
for( ElementIdentifier i=0; i< length; i++ )
{
result[i] = (*this)[i] + static_cast< ValueType >( v[i] );
}
return result;
}
template< class T >
inline Self operator-(const VariableLengthVector< T > &v) const
{
// if( m_NumElements != v.GetSize() )
// {
// itkGenericExceptionMacro( << "Cannot add VariableLengthVector of length "
// << m_NumElements " and " << v.GetSize() );
// }
const ElementIdentifier length = v.Size();
Self result( length );
for( ElementIdentifier i=0; i< length; i++ )
{
result[i] = (*this)[i] - static_cast< ValueType >( v[i] );
}
return result;
}
template< class T > inline Self operator*( T s ) const
{
Self result( m_NumElements );
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
result[i] = m_Data[i] * static_cast< ValueType >( s );
}
return result;
}
template< class T > inline Self operator/( T s ) const
{
Self result( m_NumElements );
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
result[i] = static_cast< ValueType >(
static_cast< RealValueType >(m_Data[i]) /
static_cast< RealValueType >( s ));
}
return result;
}
inline Self operator+( TValueType s ) const
{
Self result( m_NumElements );
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
result[i] = m_Data[i] + s;
}
return result;
}
inline Self operator-( TValueType s ) const
{
Self result( m_NumElements );
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
result[i] = m_Data[i] - s;
}
return result;
}
inline Self& operator--()
{
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
this->m_Data[i] -= static_cast< ValueType >( 1.0 );
}
return *this;
}
inline Self& operator++() // prefix operator ++v;
{
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
this->m_Data[i] += static_cast< ValueType >( 1.0 );
}
return *this;
}
inline Self operator--(int) // postfix operator v--;
{
Self tmp(*this);
--tmp;
return tmp;
}
inline Self operator++(int) // postfix operator v++;
{
Self tmp(*this);
++tmp;
return tmp;
}
template< class T > inline Self& operator-=
( const VariableLengthVector< T > &v )
{
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
m_Data[i] -= static_cast< ValueType >( v[i] );
}
return *this;
}
inline Self& operator-=( TValueType s )
{
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
m_Data[i] -= s;
}
return *this;
}
template< class T > inline Self& operator+=
( const VariableLengthVector< T > &v )
{
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
m_Data[i] += static_cast< ValueType >( v[i] );
}
return *this;
}
inline Self& operator+=( TValueType s )
{
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
m_Data[i] += s;
}
return *this;
}
template< class T > inline Self& operator*=( T s )
{
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
m_Data[i] *= (static_cast< ValueType >( s ));
}
return *this;
}
template< class T > inline Self& operator/=( T s )
{
for( ElementIdentifier i=0; i< m_NumElements; i++ )
{
m_Data[i] = static_cast< ValueType >(
static_cast< RealValueType >(m_Data[i]) /
static_cast< RealValueType >( s ));
}
return *this;
}
Self & operator- (); // negation operator
bool operator==( const Self &v) const;
bool operator!=( const Self &v) const;
/** Returns vector's Euclidean Norm */
RealValueType GetNorm() const;
/** Returns vector's Squared Euclidean Norm */
RealValueType GetSquaredNorm() const;
private:
bool m_LetArrayManageMemory; // if true, the array is responsible for memory of data
TValueType * m_Data; // Array to hold data
ElementIdentifier m_NumElements;
};
/** Premultiply Operator for product of a VariableLengthVector and a scalar.
* VariableLengthVector< TValueType > = T * VariableLengthVector< TValueType >
*/
template< class TValueType, class T >
inline
VariableLengthVector<TValueType>
operator*(const T &scalar, const VariableLengthVector<TValueType> &v)
{
return v * scalar;
}
template <typename TValueType >
std::ostream & operator<<(std::ostream &os, const VariableLengthVector<TValueType> &arr)
{
const unsigned int length = arr.Size();
const signed int last = (unsigned int) length - 1;
os << "[";
for (signed int i=0; i < last; ++i)
{
os << arr[i] << ", ";
}
if (length >= 1)
{
os << arr[last];
}
os << "]";
return os;
}
} // namespace itk
#include "itkNumericTraitsVariableLengthVectorPixel.h"
// Define instantiation macro for this template.
#define ITK_TEMPLATE_VariableLengthVector(_, EXPORT, x, y) namespace itk { \
_(1(class EXPORT VariableLengthVector< ITK_TEMPLATE_1 x >)) \
namespace Templates { typedef VariableLengthVector< ITK_TEMPLATE_1 x > VariableLengthVector##y; } \
}
#if ITK_TEMPLATE_EXPLICIT
# include "Templates/itkVariableLengthVector+-.h"
#endif
#if ITK_TEMPLATE_TXX
# include "itkVariableLengthVector.txx"
#endif
#endif
|