/usr/include/InsightToolkit/Common/itkVersor.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkVersor.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkVersor_h
#define __itkVersor_h
#include "itkVector.h"
#include "itkPoint.h"
#include "itkMatrix.h"
#include "itkCovariantVector.h"
#include "vnl/vnl_quaternion.h"
#include "vnl/vnl_vector_fixed.h"
namespace itk
{
/** \class Versor
* \brief A templated class holding a unit quaternion.
*
* Versor is a templated class that holds a unit quaternion.
* The difference between versors and quaternions is that quaternions
* can represent rotations and scale changes while versors are limited
* to rotations.
*
* This class only implements the operations that maintain versors as
* a group, that is, any operations between versors result in another
* versor. For this reason, addition is not defined in this class, even
* though it is a valid operation between quaternions.
*
* \ingroup Geometry
* \ingroup DataRepresentation
*
* \sa Vector
* \sa Point
* \sa CovariantVector
* \sa Matrix
*/
template<class T>
class Versor
{
public:
/** Standard class typedefs. */
typedef Versor Self;
/** ValueType can be used to declare a variable that is the same type
* as a data element held in a Versor. */
typedef T ValueType;
/** Type used for computations on the versor components */
typedef typename NumericTraits<ValueType>::RealType RealType;
/** Vector type used to represent the axis. */
typedef Vector<T,3> VectorType;
/** Point type. */
typedef Point<T,3> PointType;
/** CovariantVector type. */
typedef CovariantVector<T,3> CovariantVectorType;
/** Vnl Vector type. */
typedef vnl_vector_fixed<T,3> VnlVectorType;
/** Vnl Quaternion type. */
typedef vnl_quaternion<T> VnlQuaternionType;
/** Type of the rotation matrix equivalent to the Versor */
typedef Matrix<T,3,3> MatrixType;
/** Get a vnl_quaternion with a copy of the internal memory block. */
vnl_quaternion<T> GetVnlQuaternion( void ) const;
/** Set the Versor from a Quaternion
\warning After assignment, the corresponding quaternion will
be normalized in order to get a consistent Versor. */
void Set( const VnlQuaternionType & );
/** Set the Versor from Quaternion components.
\warning After assignment, the corresponding quaternion will be normalized
in order to get a consistent Versor. Also, if the "w" component is
negative, the four components will be negated in order to produce a
quaternion where "w" is positive, since this is implicitly assumed in other
sections of the code, in particular when "w" is computed from (x,y,z) via
normalization. The reason why it is valid to negate all the components is
that the rotation by angle \f$\theta\f$, is represented by \f$\sin(\frac{\theta}{2})\f$
in the (x,y,z) components and by \f$\cos(\frac{\theta}{2})\f$ in the "w"
component. The rotation by any \f$\theta\f$ should be equivalent to a rotation by
\f$\theta + n \times \pi\f$, therefore we should be able to replace
\f$\sin(\frac{\theta}{2})\f$ with \f$\sin(\frac{\theta}{2} + n \times \pi )\f$ and
\f$\cos(\frac{\theta}{2})\f$ with \f$\cos(\frac{\theta}{2} + n \times \pi )\f$.
Considering that \f$\cos( n \times \pi ) = (-1)^{n}\f$ we can conclude that if we
simultaneously change the signs of all the Versor components, the rotation
that it represents remains unchanged.
*/
void Set( T x, T y, T z, T w );
/** Default constructor creates a null versor
* (representing 0 degrees rotation). */
Versor();
/** Copy constructor. */
Versor(const Self & v);
/** Assignment operator =. Copy the versor argument. */
const Self& operator=(const Self & v);
/** Composition operator *=. Compose the current versor
* with the operand and store the result in the current
* versor. */
const Self& operator*=(const Self & v);
/** Division operator /=. Divide the current versor
* with the operand and store the result in the current
* versor. This is equivalent to compose the Versor with
* the reciprocal of the operand \sa GetReciprocal */
const Self& operator/=(const Self & v);
/** Get Tensor part of the Versor.
* Given that Versors are normalized quaternions this value
* is expected to be 1.0 always */
ValueType GetTensor(void) const;
/** Normalize the Versor.
* Given that Versors are normalized quaternions this method
* is provided only for convinience when it is suspected that
* a versor could be out of the unit sphere. */
void Normalize(void);
/** Get Conjugate versor. Returns the versor that produce
* a rotation by the same angle but in opposite direction. */
Self GetConjugate(void) const;
/** Get Reciprocal versor. Returns the versor that composed
* with this one will result in a scalar operator equals to 1.
* It is also equivalent to 1/this. */
Self GetReciprocal(void) const;
/** Versor operator*. Performs the composition of two versors.
* this operation is NOT commutative. */
Self operator*(const Self &vec) const;
/** Versor operator/. Performs the division of two versors. */
Self operator/(const Self &vec) const;
/** Versor operator== Performs the comparison between two versors.
* this operation uses an arbitrary threshold for the comparison. */
bool operator==(const Self &vec) const;
/** Versor operator!= Performs the comparison between two versors.
* this operation uses an arbitrary threshold for the comparison. */
bool operator!=(const Self &vec) const;
/** Returns the Scalar part. */
ValueType GetScalar( void ) const;
/** Returns the X component. */
ValueType GetX( void ) const
{ return m_X; }
/** Returns the Y component. */
ValueType GetY( void ) const
{ return m_Y; }
/** Returns the Z component. */
ValueType GetZ( void ) const
{ return m_Z; }
/** Returns the W component. */
ValueType GetW( void ) const
{ return m_W; }
/** Returns the rotation angle in radians. */
ValueType GetAngle( void ) const;
/** Returns the axis of the rotation.
* It is a unit vector parallel to the axis. */
VectorType GetAxis( void ) const;
/** Returns the Right part
* It is a vector part of the Versor. It is
* called Right because it is equivalent to
* a right angle rotation. */
VectorType GetRight( void ) const;
/** Set the versor using a vector and angle
* the unit vector parallel to the given vector
* will be used. The angle is expected in radians. */
void Set( const VectorType & axis, ValueType angle );
/** Set the versor using an orthogonal matrix.
* Based on code from:
* http://www.euclideanspace.com/maths/geometry/rotations/
* conversions/matrixToQuaternion/index.htm
*/
void Set( const MatrixType & m );
/** Set the versor using the right part.
* the magnitude of the vector given is assumed to
* be equal to vcl_sin(angle/2).
* This method will compute internally the scalar
* part that preserve the Versor as a unit quaternion. */
void Set( const VectorType & axis );
/** Sets a rotation around the X axis using the parameter
* as angle in radians. This is a method provided for
* convinience to initialize a rotation. The effect of
* this methods is not cumulative with any value previously
* stored in the Versor.
* \sa Set \sa SetRotationAroundY \sa SetRotationAroundZ */
void SetRotationAroundX( ValueType angle );
/** Sets a rotation around the Y axis using the parameter
* as angle in radians. This is a method provided for
* convinience to initialize a rotation. The effect of
* this methods is not cumulative with any value previously
* stored in the Versor.
* \sa Set \sa SetRotationAroundX \sa SetRotationAroundZ */
void SetRotationAroundY( ValueType angle );
/** Sets a rotation around the Y axis using the parameter
* as angle in radians. This is a method provided for
* convinience to initialize a rotation. The effect of
* this methods is not cumulative with any value previously
* stored in the Versor.
* \sa Set \sa SetRotationAroundX \sa SetRotationAroundY */
void SetRotationAroundZ( ValueType angle );
/** Reset the values so the versor is equivalent to an identity
* transformation. This is equivalent to set a zero angle */
void SetIdentity();
/** Transform a vector. */
VectorType Transform( const VectorType & v ) const;
/** Transform a covariant vector. */
CovariantVectorType Transform( const CovariantVectorType & v ) const;
/** Transform a point. */
PointType Transform( const PointType & v ) const;
/** Transform a vnl_vector. */
VnlVectorType Transform( const VnlVectorType & v ) const;
/** Get the matrix representation. */
MatrixType GetMatrix(void) const;
/** Get the Square root of the unit quaternion. */
Self SquareRoot(void) const;
/** Compute the Exponential of the unit quaternion
* Exponentiation by a factor is equivalent to
* multiplication of the rotaion angle of the quaternion. */
Self Exponential( ValueType exponent ) const;
private:
/** Component parallel to x axis. */
ValueType m_X;
/** Component parallel to y axis. */
ValueType m_Y;
/** Component parallel to z axis. */
ValueType m_Z;
/** Escalar component of the Versor. */
ValueType m_W;
};
template< class T>
ITK_EXPORT std::ostream& operator<<( std::ostream& os,
const Versor<T> & v)
{
os << "[ ";
os << v.GetX() << ", " << v.GetY() << ", ";
os << v.GetZ() << ", " << v.GetW() << " ]";
return os;
}
template< class T>
ITK_EXPORT std::istream& operator>>(std::istream& is,
Versor<T> & v);
} // end namespace itk
// Define instantiation macro for this template.
#define ITK_TEMPLATE_Versor(_, EXPORT, x, y) namespace itk { \
_(1(class EXPORT Versor< ITK_TEMPLATE_1 x >)) \
namespace Templates { typedef Versor< ITK_TEMPLATE_1 x > Versor##y; } \
}
#if ITK_TEMPLATE_EXPLICIT
# include "Templates/itkVersor+-.h"
#endif
#if ITK_TEMPLATE_TXX
# include "itkVersor.txx"
#endif
#endif
|