This file is indexed.

/usr/include/InsightToolkit/Common/itkVersor.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkVersor.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkVersor_h
#define __itkVersor_h

#include "itkVector.h"
#include "itkPoint.h"
#include "itkMatrix.h"
#include "itkCovariantVector.h"
#include "vnl/vnl_quaternion.h"
#include "vnl/vnl_vector_fixed.h"

namespace itk
{

/** \class Versor
 * \brief A templated class holding a unit quaternion.
 * 
 * Versor is a templated class that holds a unit quaternion.
 * The difference between versors and quaternions is that quaternions
 * can represent rotations and scale changes while versors are limited
 * to rotations.
 *
 * This class only implements the operations that maintain versors as
 * a group, that is, any operations between versors result in another
 * versor. For this reason, addition is not defined in this class, even
 * though it is a valid operation between quaternions.
 *
 * \ingroup Geometry
 * \ingroup DataRepresentation
 * 
 * \sa Vector
 * \sa Point
 * \sa CovariantVector
 * \sa Matrix
 */
template<class T> 
class Versor 
{
public:
  /** Standard class typedefs. */
  typedef Versor  Self;
   
  /** ValueType can be used to declare a variable that is the same type
   * as a data element held in a Versor.   */
  typedef T ValueType;

  /** Type used for computations on the versor components */
  typedef typename NumericTraits<ValueType>::RealType    RealType;
  
  /** Vector type used to represent the axis. */
  typedef  Vector<T,3>   VectorType;

  /** Point type.  */
  typedef  Point<T,3>   PointType;
 
  /** CovariantVector type.  */
  typedef  CovariantVector<T,3>   CovariantVectorType;
 
  /** Vnl Vector type.  */
  typedef  vnl_vector_fixed<T,3>   VnlVectorType;

  /** Vnl Quaternion type.  */
  typedef  vnl_quaternion<T>       VnlQuaternionType;

  /** Type of the rotation matrix equivalent to the Versor */
  typedef  Matrix<T,3,3>          MatrixType;

  /** Get a vnl_quaternion with a copy of the internal memory block. */
  vnl_quaternion<T> GetVnlQuaternion( void ) const;

  /** Set the Versor from a Quaternion 
   \warning After assignment, the corresponding quaternion will 
            be normalized in order to get a consistent Versor.  */
  void Set( const VnlQuaternionType & ); 

  /** Set the Versor from Quaternion components.
   \warning After assignment, the corresponding quaternion will be normalized
   in order to get a consistent Versor.  Also, if the "w" component is
   negative, the four components will be negated in order to produce a
   quaternion where "w" is positive, since this is implicitly assumed in other
   sections of the code, in particular when "w" is computed from (x,y,z) via
   normalization. The reason why it is valid to negate all the components is
   that the rotation by angle \f$\theta\f$, is represented by \f$\sin(\frac{\theta}{2})\f$
   in the (x,y,z) components and by \f$\cos(\frac{\theta}{2})\f$ in the "w"
   component. The rotation by any \f$\theta\f$ should be equivalent to a rotation by
   \f$\theta + n \times \pi\f$, therefore we should be able to replace
   \f$\sin(\frac{\theta}{2})\f$ with \f$\sin(\frac{\theta}{2} + n \times \pi )\f$ and
   \f$\cos(\frac{\theta}{2})\f$ with \f$\cos(\frac{\theta}{2} + n \times \pi )\f$. 
   Considering that \f$\cos( n \times \pi ) = (-1)^{n}\f$ we can conclude that if we 
   simultaneously change the signs of all the Versor components, the rotation
   that it represents remains unchanged.
   */
  void Set( T x, T y, T z, T w );  


  /** Default constructor creates a null versor 
   * (representing 0 degrees  rotation). */
  Versor();

  /** Copy constructor.  */
  Versor(const Self & v);

  /** Assignment operator =.  Copy the versor argument. */
  const Self& operator=(const Self & v);
 
  /** Composition operator *=.  Compose the current versor
   * with the operand and store the result in the current
   * versor. */
  const Self& operator*=(const Self & v);

  /** Division operator /=.  Divide the current versor
   * with the operand and store the result in the current
   * versor. This is equivalent to compose the Versor with
   * the reciprocal of the operand \sa GetReciprocal */
  const Self& operator/=(const Self & v);


  /** Get Tensor part of the Versor. 
   * Given that Versors are normalized quaternions this value
   * is expected to be 1.0 always  */
  ValueType GetTensor(void) const;

  /** Normalize the Versor.
   * Given that Versors are normalized quaternions this method
   * is provided only for convinience when it is suspected that
   * a versor could be out of the unit sphere.   */
  void Normalize(void);

  /** Get Conjugate versor.  Returns the versor that produce
   * a rotation by the same angle but in opposite direction. */
  Self GetConjugate(void) const;

  /** Get Reciprocal versor.  Returns the versor that composed
   * with this one will result in a scalar operator equals to 1.
   * It is also equivalent to 1/this. */
  Self GetReciprocal(void) const;

  /** Versor operator*.  Performs the composition of two versors.
   * this operation is NOT commutative. */
  Self operator*(const Self &vec) const;

  /** Versor operator/.  Performs the division of two versors. */
  Self operator/(const Self &vec) const;

  /** Versor operator==  Performs the comparison between two versors.
   * this operation uses an arbitrary threshold for the comparison.  */
  bool operator==(const Self &vec) const;

  /** Versor operator!=  Performs the comparison between two versors.
   * this operation uses an arbitrary threshold for the comparison.  */
  bool operator!=(const Self &vec) const;

  /** Returns the Scalar part. */
  ValueType GetScalar( void ) const;

  /** Returns the X component. */
  ValueType GetX( void ) const
    { return m_X; }

  /** Returns the Y component. */
  ValueType GetY( void ) const
    { return m_Y; }

  /** Returns the Z component. */
  ValueType GetZ( void ) const
    { return m_Z; }

  /** Returns the W component. */
  ValueType GetW( void ) const
    { return m_W; }

  /** Returns the rotation angle in radians.  */
  ValueType GetAngle( void ) const;

  /** Returns the axis of the rotation.
   * It is a unit vector parallel to the axis. */
  VectorType GetAxis( void ) const;
   
  /** Returns the Right part
   * It is a vector part of the Versor. It is 
   * called Right because it is equivalent to
   * a right angle rotation. */
  VectorType GetRight( void ) const;
   
  /** Set the versor using a vector and angle
   * the unit vector parallel to the given vector 
   * will be used. The angle is expected in radians. */
  void Set( const VectorType & axis, ValueType angle );
  
  /** Set the versor using an orthogonal matrix.
   *  Based on code from:
   *  http://www.euclideanspace.com/maths/geometry/rotations/
   *  conversions/matrixToQuaternion/index.htm
   */
  void Set( const MatrixType & m );

  /** Set the versor using the right part.
   * the magnitude of the vector given is assumed to 
   * be equal to vcl_sin(angle/2).
   * This method will compute internally the scalar
   * part that preserve the Versor as a unit quaternion. */
  void Set( const VectorType & axis );

  /** Sets a rotation around the X axis using the parameter
   * as angle in radians. This is a method provided for 
   * convinience to initialize a rotation. The effect of
   * this methods is not cumulative with any value previously
   * stored in the Versor.
   * \sa Set \sa SetRotationAroundY \sa SetRotationAroundZ */
  void SetRotationAroundX( ValueType angle );
 
  /** Sets a rotation around the Y axis using the parameter
   * as angle in radians. This is a method provided for 
   * convinience to initialize a rotation. The effect of
   * this methods is not cumulative with any value previously
   * stored in the Versor.
   * \sa Set \sa SetRotationAroundX \sa SetRotationAroundZ */
  void SetRotationAroundY( ValueType angle );
 
  /** Sets a rotation around the Y axis using the parameter
   * as angle in radians. This is a method provided for 
   * convinience to initialize a rotation. The effect of
   * this methods is not cumulative with any value previously
   * stored in the Versor.
   * \sa Set \sa SetRotationAroundX \sa SetRotationAroundY */
  void SetRotationAroundZ( ValueType angle );

  /** Reset the values so the versor is equivalent to an identity 
   *  transformation. This is equivalent to set a zero angle */
  void SetIdentity();
  
  /** Transform a vector. */
  VectorType Transform( const VectorType & v ) const;

  /** Transform a covariant vector.  */
  CovariantVectorType Transform( const CovariantVectorType & v ) const;

  /** Transform a point. */
  PointType Transform( const PointType & v ) const;

  /** Transform a vnl_vector. */
  VnlVectorType Transform( const VnlVectorType & v ) const;

  /** Get the matrix representation. */
  MatrixType GetMatrix(void) const;
   
  /** Get the Square root of the unit quaternion. */
  Self SquareRoot(void) const;
   
  /** Compute the Exponential of the unit quaternion
   * Exponentiation by a factor is equivalent to 
   * multiplication of the rotaion angle of the quaternion. */
  Self Exponential( ValueType exponent ) const;

private: 
  /** Component parallel to x axis.  */
  ValueType  m_X;
   
  /** Component parallel to y axis.  */
  ValueType  m_Y;
   
  /** Component parallel to z axis.  */
  ValueType  m_Z;

  /** Escalar component of the Versor.  */
  ValueType  m_W;
};

template< class T>  
ITK_EXPORT std::ostream& operator<<( std::ostream& os, 
                                     const Versor<T> & v)
{
  os << "[ ";
  os << v.GetX() << ", " << v.GetY() << ", ";
  os << v.GetZ() << ", " << v.GetW() << " ]";
  return os;
}

template< class T>
ITK_EXPORT std::istream& operator>>(std::istream& is, 
                                    Versor<T> & v); 


} // end namespace itk
  

// Define instantiation macro for this template.
#define ITK_TEMPLATE_Versor(_, EXPORT, x, y) namespace itk { \
  _(1(class EXPORT Versor< ITK_TEMPLATE_1 x >)) \
  namespace Templates { typedef Versor< ITK_TEMPLATE_1 x > Versor##y; } \
  }

#if ITK_TEMPLATE_EXPLICIT
# include "Templates/itkVersor+-.h"
#endif

#if ITK_TEMPLATE_TXX
# include "itkVersor.txx"
#endif


#endif