This file is indexed.

/usr/include/InsightToolkit/Common/itkWindowedSincInterpolateImageFunction.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkWindowedSincInterpolateImageFunction.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkWindowedSincInterpolateImageFunction_txx
#define __itkWindowedSincInterpolateImageFunction_txx

#include "itkWindowedSincInterpolateImageFunction.h"

#include "vnl/vnl_math.h"

namespace itk
{

/* Constant definitions for functions */
namespace Function {

template<unsigned int VRadius, class TInput, class TOutput>
const double
CosineWindowFunction<VRadius, TInput, TOutput>
::m_Factor = vnl_math::pi / ( 2 * VRadius );

template<unsigned int VRadius, class TInput, class TOutput>
const double
HammingWindowFunction<VRadius, TInput, TOutput>
::m_Factor = vnl_math::pi / VRadius;

template<unsigned int VRadius, class TInput, class TOutput>
const double
WelchWindowFunction<VRadius, TInput, TOutput>
::m_Factor = 1.0 / ( VRadius * VRadius );

template<unsigned int VRadius, class TInput, class TOutput>
const double
LanczosWindowFunction<VRadius, TInput, TOutput>
::m_Factor = vnl_math::pi / VRadius;

template<unsigned int VRadius, class TInput, class TOutput>
const double
BlackmanWindowFunction<VRadius, TInput, TOutput>
::m_Factor1 = vnl_math::pi / VRadius;

template<unsigned int VRadius, class TInput, class TOutput>
const double
BlackmanWindowFunction<VRadius, TInput, TOutput>
::m_Factor2 = 2.0 * vnl_math::pi / VRadius;

} // end namespace Function


/** Window size constant */ 
template<class TInputImage, unsigned int VRadius,  
  class TWindowFunction, class TBoundaryCondition, class TCoordRep>
const unsigned int
WindowedSincInterpolateImageFunction<TInputImage,VRadius,
  TWindowFunction,TBoundaryCondition,TCoordRep>
::m_WindowSize = VRadius << 1;


/** Constructor */
template<class TInputImage, unsigned int VRadius,  
  class TWindowFunction, class TBoundaryCondition, class TCoordRep>
WindowedSincInterpolateImageFunction<TInputImage,VRadius,
  TWindowFunction,TBoundaryCondition,TCoordRep>
::WindowedSincInterpolateImageFunction()
{
  unsigned int dim;
  
  // Compute the offset table size
  m_OffsetTableSize = 1;
  for(dim=0;dim<ImageDimension;dim++)
    {
    m_OffsetTableSize *= m_WindowSize;
    }

  // Allocate the offset table
  m_OffsetTable = new unsigned int[m_OffsetTableSize];

  // Allocate the weights tables
  m_WeightOffsetTable = new unsigned int *[m_OffsetTableSize];
  for(unsigned int i=0;i<m_OffsetTableSize;i++)
    {
    m_WeightOffsetTable[i] = new unsigned int[ImageDimension];
    }
}

/** Destructor */
template<class TInputImage, unsigned int VRadius,  
  class TWindowFunction, class TBoundaryCondition, class TCoordRep>
WindowedSincInterpolateImageFunction<TInputImage,VRadius,
  TWindowFunction,TBoundaryCondition,TCoordRep>
::~WindowedSincInterpolateImageFunction()
{
  // Clear the offset table
  delete [] m_OffsetTable;

  // Clear the weights tables
  for(unsigned int i=0; i < m_OffsetTableSize; i++)
    {
    delete [] m_WeightOffsetTable[i];
    }
  delete[] m_WeightOffsetTable;
}

template<class TInputImage, unsigned int VRadius,  
  class TWindowFunction, class TBoundaryCondition, class TCoordRep>
void
WindowedSincInterpolateImageFunction<TInputImage,VRadius,
  TWindowFunction,TBoundaryCondition,TCoordRep>
::SetInputImage(const ImageType *image)
{
  unsigned int dim;
  
  // Call the parent implementation
  Superclass::SetInputImage(image);

  if( image == NULL )
    {
    return;
    }

  // Set the radius for the neighborhood
  Size<ImageDimension> radius;
  radius.Fill(VRadius);

  // Initialize the neighborhood
  IteratorType it = IteratorType(radius, image, image->GetBufferedRegion());

  // Compute the offset tables (we ignore all the zero indices
  // in the neighborhood)
  unsigned int iOffset = 0;
  int empty = VRadius;
  for(unsigned int iPos = 0; iPos < it.Size(); iPos++)
    {
    // Get the offset (index)
    typename IteratorType::OffsetType off = it.GetOffset(iPos);

    // Check if the offset has zero weights
    bool nonzero = true;
    for(dim = 0; dim < ImageDimension; dim++)
      {
      if(off[dim] == -empty) 
        {
        nonzero = false;
        break;
        }
      }

    // Only use offsets with non-zero indices
    if(nonzero)
      {
      // Set the offset index
      m_OffsetTable[iOffset] = iPos;

      // Set the weight table indices
      for(dim = 0; dim < ImageDimension; dim++)
        {
        m_WeightOffsetTable[iOffset][dim] = off[dim] + VRadius - 1;
        }

      // Increment the index
      iOffset++;
      }
    }
}

/** PrintSelf */
template<class TInputImage, unsigned int VRadius,  
  class TWindowFunction, class TBoundaryCondition, class TCoordRep>
void
WindowedSincInterpolateImageFunction<TInputImage,VRadius,
  TWindowFunction,TBoundaryCondition,TCoordRep>
::PrintSelf(std::ostream& os, Indent indent) const
{
  this->Superclass::PrintSelf(os,indent);
}


/** Evaluate at image index position */
template<class TInputImage, unsigned int VRadius,  
  class TWindowFunction, class TBoundaryCondition, class TCoordRep>
typename WindowedSincInterpolateImageFunction<TInputImage,VRadius,
  TWindowFunction,TBoundaryCondition,TCoordRep>
::OutputType
WindowedSincInterpolateImageFunction<TInputImage,VRadius,
  TWindowFunction,TBoundaryCondition,TCoordRep>
::EvaluateAtContinuousIndex(
  const ContinuousIndexType& index) const
{
  unsigned int dim;
  IndexType baseIndex;
  double distance[ImageDimension];

  // Compute the integer index based on the continuous one by 
  // 'flooring' the index
  for( dim = 0; dim < ImageDimension; dim++ )
    {
    baseIndex[dim] = Math::Floor<IndexValueType>( index[dim] );
    distance[dim] = index[dim] - static_cast< double >( baseIndex[dim] );
    }
  
  // cout << "Sampling at index " << index << " discrete " << baseIndex << endl;

  // Position the neighborhood at the index of interest
  Size<ImageDimension> radius;
  radius.Fill(VRadius);
  IteratorType nit = IteratorType( radius, this->GetInputImage(), 
                                  this->GetInputImage()->GetBufferedRegion());
  nit.SetLocation( baseIndex );
  
  // Compute the sinc function for each dimension
  double xWeight[ImageDimension][2 * VRadius];
  for( dim = 0; dim < ImageDimension; dim++ )
    {
    // x is the offset, hence the parameter of the kernel
    double x = distance[dim] + VRadius;

    // If distance is zero, i.e. the index falls precisely on the
    // pixel boundary, the weights form a delta function.
    if(distance[dim] == 0.0)
      {
      for( unsigned int i = 0; i < m_WindowSize; i++)
        {
        xWeight[dim][i] = static_cast<int>(i) == VRadius - 1 ? 1 : 0;
        }
      }
    else
      {
      // i is the relative offset in dimension dim.
      for( unsigned int i = 0; i < m_WindowSize; i++)
        {
        // Increment the offset, taking it through the range
        // (dist + rad - 1, ..., dist - rad), i.e. all x
        // such that vcl_abs(x) <= rad
        x -= 1.0;

        // Compute the weight for this m
        xWeight[dim][i] = m_WindowFunction(x) * Sinc(x);
        }
      }
    }

  // Iterate over the neighborhood, taking the correct set
  // of weights in each dimension 
  double xPixelValue = 0.0;
  for(unsigned int j = 0; j < m_OffsetTableSize; j++)
    {
    // Get the offset for this neighbor
    unsigned int off = m_OffsetTable[j];
    
    // Get the intensity value at the pixel
    double xVal = nit.GetPixel(off);

    // Multiply the intensity by each of the weights. Gotta hope
    // that the compiler will unwrap this loop and pipeline this!
    for(dim = 0; dim < ImageDimension; dim++)
      {
      xVal *= xWeight[ dim ][ m_WeightOffsetTable[j][dim] ];
      }

    // Increment the pixel value
    xPixelValue += xVal;
    }
  
  // Return the interpolated value
  return static_cast<OutputType>(xPixelValue);
}

} // namespace itk

#endif