/usr/include/InsightToolkit/Numerics/FEM/itkFEMElementBase.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkFEMElementBase.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkFEMElementBase_h
#define __itkFEMElementBase_h
#include "itkFEMLightObject.h"
#include "itkFEMPArray.h"
#include "itkFEMMaterialBase.h"
#include "itkFEMSolution.h"
#include "itkVisitorDispatcher.h"
#include "vnl/vnl_matrix.h"
#include "vnl/vnl_vector.h"
#include <set>
#include <vector>
namespace itk {
namespace fem {
// FIXME: Write better documentation
/**
* \class Element
* \brief Abstract base element class.
*
* Derive this class to create new finite element classes.
* All derived classes must define:
*
* - Ke(): Function to calculate the element stiffness matrix in global coordinate system.
* - Fe(): Function to calculate the element force vector in global coordinate system.
* - uDOF(): Provide a pointer to storage of i-th DOF displacement in the element.
* - Clone(): Function that creates a duplicate of current element and returns a pointer to it.
*
* and optionally (if required):
* - Read(): Reads element data from the stream f. assume that the stream position is
* already where the element data starts. Take care of the error checking.
* - Write(): Writes element data to the stream.
* - Draw(): Draws the element on the device context (Windows only).
*
* The storage of element parameters (geometry...) can't be implemented here, since we don't know yet,
* how much memory each element needs. Instead each derived class should take care of the memory
* management (declare appropriate data members) for the element parameters and provide access
* to these parameters (like nodes, materials...).
*/
/**
* \def HANDLE_ELEMENT_LOADS()
* \brief Macro that simplifies the the GetLoadVector function definitions.
*
* NOTE: This macro must be called in declaration of ALL
* derived Element classes.
*/
#define HANDLE_ELEMENT_LOADS() \
/** Pointer type that specifies functions that can handle loads on this element */ \
typedef void (*LoadImplementationFunctionPointer)(ConstPointer,Element::LoadPointer, Element::VectorType& ); \
virtual void GetLoadVector( Element::LoadPointer l, Element::VectorType& Fe ) const \
{ VisitorDispatcher<Self,Element::LoadType, LoadImplementationFunctionPointer>::Visit(l)(this,l,Fe); }
class Element : public FEMLightObject
{
FEM_ABSTRACT_CLASS(Element,FEMLightObject)
public:
/**
* Floating point type used in all Element classes.
*/
typedef double Float;
/**
* Array class that holds special pointers to the Element objects
*/
typedef FEMPArray<Element> ArrayType;
/**
* Class used to store the element stiffness matrix
*/
typedef vnl_matrix<Float> MatrixType;
/**
* Class to store the element load vector
*/
typedef vnl_vector<Float> VectorType;
/**
* Easy and consistent access to LoadElement and LoadElement::Pointer type.
* This is a pointer to FEMLightObject to avoid cyclic references between
* LoadElement and Element classes.
* As a consequence whenever you need to use a pointer to LoadElement class
* within the element's declaration or definition, ALWAYS use this typedef
* instead.
* When calling the GetLoadVector(...) function from outside, you should
* ALWAYS first convert the argument to Element::LoadPointer. See
* code of function Solver::AssembleF(...) for more info.
*/
typedef FEMLightObject LoadType;
typedef LoadType::Pointer LoadPointer;
/**
* Type that stores global ID's of degrees of freedom.
*/
typedef unsigned int DegreeOfFreedomIDType;
/**
* Constant that represents an invalid DegreeOfFreedomID object.
* If a degree of freedom is assigned this value, this means that
* that no specific value was (yet) assigned to this DOF.
*/
enum{ InvalidDegreeOfFreedomID = 0xffffffff };
/**
* \class Node
* \brief Class that stores information required to define a node.
*
* A node can define a point in space and can hold an arbitrary number
* of coordinates and the DOFs. Since the only classes that use nodes
* are the elements, the node class is defined within an element base class.
*/
class Node : public FEMLightObject
{
FEM_CLASS(Node,FEMLightObject)
public:
/**
* Floating point precision type.
*/
typedef double Float;
/**
* Array class that holds special pointers to the nodes.
*/
typedef FEMPArray<Self> ArrayType;
/* Windows visualization */
#ifdef FEM_BUILD_VISUALIZATION
/** Draws the node on the DC */
void Draw(CDC* pDC, Solution::ConstPointer sol) const;
/** Global scale for drawing on the DC */
static double& DC_Scale;
#endif
/**
* Default constructor
*/
Node() {}
/**
* Create 2D node.
*/
Node(Float x, Float y) : m_coordinates(VectorType(2))
{ m_coordinates[0]=x; m_coordinates[1]=y; }
/**
* Create 3D node.
*/
Node(Float x, Float y, Float z) : m_coordinates(VectorType(3))
{ m_coordinates[0]=x; m_coordinates[1]=y; m_coordinates[2]=z;}
/**
* Return a reference to a vector that contains coordinates
* of this node.
*/
const VectorType& GetCoordinates( void ) const
{ return m_coordinates; }
/**
* Set coordinates of a node.
*/
void SetCoordinates( const VectorType& coords )
{ m_coordinates=coords; }
/**
* Get DOF IDs associated with this node.
*/
DegreeOfFreedomIDType GetDegreeOfFreedom(unsigned int i) const
{
if( i>=m_dof.size() ) { return InvalidDegreeOfFreedomID; }
return m_dof[i];
}
/**
* Set DOF IDs associated with this node.
*/
void SetDegreeOfFreedom(unsigned int i, DegreeOfFreedomIDType dof) const
{
if( i>=m_dof.size() ) { m_dof.resize(i+1, InvalidDegreeOfFreedomID); }
m_dof[i]=dof;
}
virtual void ClearDegreesOfFreedom( void ) const
{
m_dof.clear();
}
virtual void Read( std::istream& f, void* info );
virtual void Write( std::ostream& f ) const;
public:
/**
* List of pointers to elements that use this node. External code is
* responsible for maintaining the list.
*/
typedef std::set<Element*> SetOfElements;
mutable SetOfElements m_elements;
private:
/**
* Vector object that holds node coordinates.
*/
VectorType m_coordinates;
/**
* Array that holds IDs of degrees of freedom that are
* defined at this node.
*/
mutable std::vector<DegreeOfFreedomIDType> m_dof;
}; // end class Node
//////////////////////////////////////////////////////////////////////////
/*
* Methods related to the physics of the problem.
*/
virtual VectorType GetStrainsAtPoint(const VectorType& pt, const Solution& sol, unsigned int index) const;
virtual VectorType GetStressesAtPoint(const VectorType& pt, const VectorType& e, const Solution& sol, unsigned int index) const;
/**
* Compute and return element stiffnes matrix (Ke) in global coordinate
* system.
* The base class provides a general implementation which only computes
*
* b T
* int B(x) D B(x) dx
* a
*
* using the Gaussian numeric integration method. The function calls
* GetIntegrationPointAndWeight() / GetNumberOfIntegrationPoints() to obtain
* the integration points. It also calls the GetStrainDisplacementMatrix()
* and GetMaterialMatrix() member functions.
*
* \param Ke Reference to the resulting stiffnes matrix.
*
* \note This is a very generic implementation of the stiffness matrix
* that is suitable for any problem/element definition. A specifc
* element may override this implementation with its own simple one.
*/
virtual void GetStiffnessMatrix( MatrixType& Ke ) const;
/**
* Compute the physical energy, U, of the deformation (e.g. stress / strain ).
*
* T
* U = u Ke u
*
* The matrix LocalSolution contains the solution to use in the energy
* computation. Usually, this is the solution at the nodes.
*/
virtual Float GetElementDeformationEnergy( MatrixType& LocalSolution ) const;
/**
* Compute and return element mass matrix (Me) in global coordinate system.
*
* b T
* int N(x) (rho c) N(x) dx
* a
*
* where (rho c) is constant (element density), which is here assumed to be
* equal to one. If this is not the case, this function must be overriden in
* a derived class. Implementation is similar to GetStiffnessMatrix.
*/
virtual void GetMassMatrix( MatrixType& Me ) const;
/**
* Compute and return landmark contribution to element stiffness
* matrix (Le) in global coordinate system.
*
* b T
* int (1/eta)^2 N(x) N(x) dx
* a
*
* where (eta ) is the landmark weight. Implementation is similar
* to GetMassMatrix.
*/
virtual void GetLandmarkContributionMatrix(float eta, MatrixType& Le) const;
/**
* Compute and return the element load vector for a given external load.
* The class of load object determines the type of load acting on the
* elemnent. Basically this is the contribution of this element on the right
* side of the master matrix equation, due to the specified load.
* Returned vector includes only nodal forces that correspond to the given
* Load object.
*
* Visitor design pattern is used in the loads implementation. This function
* only selects and calls the proper function based on the given class of
* load object. The code that performs the actual conversion to the
* corresponding nodal loads is defined elswhere.
*
* \note Each derived class must implement its own version of this function.
* This is automated by calling the LOAD_FUNCTION() macro within the
* class declaration (in the public: block).
*
* For example on how to define specific element load, see funtion
* LoadImplementationPoint_Bar2D.
*
* \note: Before a load can be applied to an element, the function that
* implements a load must be registered with the VisitorDispactcher
* class.
*
* \param l Pointer to a load object.
* \param Fe Reference to vector object that will store nodal forces.
*
* \sa VisitorDispatcher
*/
virtual void GetLoadVector( LoadPointer l, VectorType& Fe ) const = 0;
/**
* Compute the strain displacement matrix at local point.
*
* \param B Reference to a matrix object that will contain the result
* \param shapeDgl Matrix that contains derivatives of shape functions
* w.r.t. global coordinates.
*/
virtual void GetStrainDisplacementMatrix( MatrixType& B, const MatrixType& shapeDgl ) const = 0;
/**
* Compute the element material matrix.
*
* \param D Reference to a matrix object
*/
virtual void GetMaterialMatrix( MatrixType& D ) const = 0;
/**
* Return interpolated value of all unknown functions at
* given local point.
*
* \param pt Point in local element coordinates.
* \param sol Reference to the master solution object. This object
* is created by the Solver object when the whole FEM problem
* is solved and contains the values of unknown functions
* at nodes (degrees of freedom).
* \param solutionIndex We allow more than one solution vector to be stored - this selects which to use in interpolation.
*/
virtual VectorType InterpolateSolution( const VectorType& pt, const Solution& sol , unsigned int solutionIndex=0 ) const;
/**
* Return interpolated value of f-th unknown function at
* given local point.
*
* \param pt Point in local element coordinates.
* \param sol Reference to the master solution object. This object
* is created by the Solver object when the whole FEM problem
* is solved and contains the values of unknown functions
* at nodes (degrees of freedom).
* \param f Number of unknown function to interpolate.
* Must be 0 <= f < GetNumberOfDegreesOfFreedomPerNode().
* \param solutionIndex We allow more than one solution vector to be stored - this selects which to use in interpolation.
*/
virtual Float InterpolateSolutionN( const VectorType& pt, const Solution& sol, unsigned int f , unsigned int solutionIndex=0 ) const;
/**
* Convenient way to access IDs of degrees of freedom
* that are stored in node objects.
*
* \param local_dof Local number of degree of freedom within an element.
*/
DegreeOfFreedomIDType GetDegreeOfFreedom( unsigned int local_dof ) const
{
if(local_dof>this->GetNumberOfDegreesOfFreedom()) { return InvalidDegreeOfFreedomID; }
return this->GetNode(local_dof/this->GetNumberOfDegreesOfFreedomPerNode())->GetDegreeOfFreedom(local_dof%this->GetNumberOfDegreesOfFreedomPerNode());
}
/**
* Return the pointer to the Material object used by the element.
* All derived classes, which use objects of Material class should
* override this method to provide access to the material from the
* base class.
*
* \note Derived Element classes don't have to use a material
* class, but since the majority of the final Element classes
* uses Material classes to specify phhysical constants that the
* element depends on, we provide this virtual function that
* enables easy access to this pointer from the base class. If the
* derived class does not override this function, the returned pointer
* is 0 by default, signaling that there is no Material object.
*
* \sa SetMaterial
*/
virtual Material::ConstPointer GetMaterial(void) const { return 0; }
/**
* Set the pointer to the Material object used by the element.
* All derived classes, which use objects of Material class should
* override this method to provide access to the material from the
* base class.
*
* \sa GetMaterial
*/
virtual void SetMaterial(Material::ConstPointer) {} // FIXME: maybe we should throw an exception instead
//////////////////////////////////////////////////////////////////////////
/**
* Methods related to numeric integration
*/
/**
* Computes the vector representing the i-th integration point in
* local element coordinates for a Gauss-Legendre numerical integration
* over the element domain. It also computes the weight at this integration
* point.
*
* Optionally you can also specify the order of integration. If order
* is not specified, it defaults to 0, which means that the derived element
* should use the optimal integration order specific for that element.
*
* \note This function must be implemented in derived element classes, and
* is expected to provide valid integration points for up to
* gaussMaxOrder-th order of integration.
*
* \param i Integration point number 0<=i<GetNumberOfIntegrationPoints()
* \param pt Reference to object of class VectorType that will hold the
* integration point.
* \param w Reference to Float variable that will hold the weight.
* \param order Order of integration.
*
* \sa GetNumberOfIntegrationPoints()
*/
virtual void GetIntegrationPointAndWeight( unsigned int i, VectorType& pt, Float& w, unsigned int order=0 ) const = 0;
/**
* Returns total number of integration points, for given order
* of Gauss-Legendre numerical integration rule.
*
* \note This function must be implemented in derived element classes, and
* is expected to provide valid number of integration points for up
* to gaussMaxOrder-th order of integration.
*
* \sa GetIntegrationPointAndWeight()
*/
virtual unsigned int GetNumberOfIntegrationPoints( unsigned int order=0 ) const = 0;
/**
* Maximum supported order of 1D Gauss-Legendre integration.
* Integration points are defined for orders from 1 to gaussMaxOrder.
* Number of integration points is equal to the order of integration
* rule.
*
* \sa gaussPoint
*/
enum { gaussMaxOrder=10 };
/**
* Points for 1D Gauss-Legendre integration from -1 to 1. First
* index is order of integration, second index is the number of
* integration point.
*
* Example: gaussPoint[4][2] returns third point of the 4th order
* integration rule. Subarray gaussPoint[0][...] does not provide useful
* information. It is there only to keep order index correct.
*
* \sa gaussWeight
*/
static const Float gaussPoint[gaussMaxOrder+1][gaussMaxOrder];
/**
* Weights for Gauss-Legendre integration.
*
* \sa gaussPoint
*/
static const Float gaussWeight[gaussMaxOrder+1][gaussMaxOrder];
//////////////////////////////////////////////////////////////////////////
/*
* Methods related to the geometry of an element
*/
/**
* Type that is used to store IDs of a node. It is a
* pointer to Node objects.
*/
typedef Node::ConstPointer NodeIDType;
/**
* Return the total number of nodes in an elememnt.
*/
virtual unsigned int GetNumberOfNodes( void ) const = 0;
/**
* Returns the ID (pointer) of n-th node in an element.
*/
virtual NodeIDType GetNode(unsigned int n) const = 0;
/**
* Sets the pointe of n-th node in an element to node.
*/
virtual void SetNode(unsigned int n, NodeIDType node) = 0;
/**
* Return a vector of global coordinates of n-th node in an element.
*
* \param n Local number of node. Must be 0 <= n < this->GetNumberOfNodes().
*/
virtual const VectorType& GetNodeCoordinates( unsigned int n ) const = 0;
/**
* Transforms the given local element coordinates into global.
*
* \param pt Point in local element coordinates.
*/
virtual VectorType GetGlobalFromLocalCoordinates( const VectorType& pt ) const;
/**
* Transforms the given global element coordinates into local. Returns false if the point is outside.
*
* \param globalPt Reference to vector containing a point in global (world) coordinates.
* \param localPt Reference to the vector that will store the local coordinate.
*/
virtual bool GetLocalFromGlobalCoordinates( const VectorType& globalPt , VectorType& localPt ) const = 0;
/**
* Returns the number of dimensions of space in which the element is
* defined. e.g. 2 for 2D elements, 3 for 3D... This is also equal
* to the size vector containing nodal coordinates.
*/
virtual unsigned int GetNumberOfSpatialDimensions() const = 0;
/**
* Returns a vector containing the values of all shape functions
* that define the geometry of a finite element at a given local point
* within an element.
*
* \param pt Point in local element coordinates.
*/
virtual VectorType ShapeFunctions( const VectorType& pt ) const = 0;
/**
* Compute the matrix of values of the shape functions derivatives with
* respect to local coordinates of this element at a given point.
*
* A column in this matrix corresponds to a specific shape function,
* while a row corresponds to different local coordinates. E.g.
* element at row 2, col 3 contains derivative of shape function
* number 3 with respect to local coordinate number 2.
*
* \param pt Point in local element coordinates.
* \param shapeD Reference to a matrix object, which will be filled
* with values of shape function derivatives.
*
* \sa ShapeFunctionGlobalDerivatives
*/
virtual void ShapeFunctionDerivatives( const VectorType& pt, MatrixType& shapeD ) const = 0;
/**
* Compute matrix of shape function derivatives with respect to
* global coordinates.
*
* A column in this matrix corresponds to a specific shape function,
* while a row corresponds to different global coordinates.
*
* \param pt Point in local element coordinates.
* \param shapeDgl Reference to a matrix object, which will be filled
* with values of shape function derivatives w.r.t. global
* (world) element coordinates.
* \param pJ Optional pointer to Jacobian matrix computed at point pt. If this
* is set to 0, the Jacobian will be computed as necessary.
* \param pshapeD A pointer to derivatives of shape functions at point pt.
* If this pointer is 0, derivatives will be computed as
* necessary.
*
* \sa ShapeFunctionDerivatives
*/
virtual void ShapeFunctionGlobalDerivatives( const VectorType& pt, MatrixType& shapeDgl, const MatrixType* pJ=0, const MatrixType* pshapeD=0 ) const;
/**
* Compute the Jacobian matrix of the transformation from local
* to global coordinates at a given local point.
*
* A column in this matrix corresponds to a global coordinate,
* while a row corresponds to different local coordinates. E.g.
* element at row 2, col 3 contains derivative of the third global
* coordinate with respect to local coordinate number 2.
*
* In order to compute the Jacobian, we normally need the shape
* function derivatives. If they are known, you should pass a
* pointer to an object of MatrixType that contains the shape
* function derivatives. If they are not known, pass null pointer
* and they will be computed automatically.
*
* \param pt Point in local coordinates
* \param J referece to matrix object, which will contain the jacobian
* \param pshapeD A pointer to derivatives of shape functions at point pt.
* If this pointer is 0, derivatives will be computed as
* necessary.
*/
virtual void Jacobian( const VectorType& pt, MatrixType& J, const MatrixType* pshapeD = 0 ) const;
/**
* Compute the determinant of the Jacobian matrix
* at a given point with respect to the local
* coordinate system.
*
* \param pt Point in local element coordinates.
* \param pJ Optional pointer to Jacobian matrix computed at point pt. If this
* is set to 0, the Jacobian will be computed as necessary.
*/
virtual Float JacobianDeterminant( const VectorType& pt, const MatrixType* pJ = 0 ) const;
/**
* Compute the inverse of the Jacobian matrix
* at a given point with respect to the local
* coordinate system.
*
* \param pt Point in local element coordinates.
* \param invJ Reference to the object of MatrixType that will store the
* computed inverse if Jacobian.
* \param pJ Optional pointer to Jacobian matrix computed at point pt. If this
* is set to 0, the Jacobian will be computed as necessary.
*/
virtual void JacobianInverse( const VectorType& pt, MatrixType& invJ, const MatrixType* pJ = 0 ) const;
/**
* Return the total number of degrees of freedom defined in a derived
* element class. By default this is equal to number of points in a cell
* multiplied by number of degrees of freedom at each point.
*/
virtual unsigned int GetNumberOfDegreesOfFreedom( void ) const
{
return this->GetNumberOfNodes() * this->GetNumberOfDegreesOfFreedomPerNode();
}
/**
* Return the number of degrees of freedom at each node. This is also
* equal to number of unknowns that we want to solve for at each point
* within an element.
*
* \note This function must be overriden in all derived classes.
*/
virtual unsigned int GetNumberOfDegreesOfFreedomPerNode( void ) const = 0;
//////////////////////////////////////////////////////////////////////////
/**
* Methods and classes related to IO and drawing
*/
#ifdef FEM_BUILD_VISUALIZATION
/**
* Draws the element on the DC.
*/
virtual void Draw(CDC* pDC, Solution::ConstPointer sol) const {}
/** global scale for drawing on the DC */
static double DC_Scale;
#endif
};
// Make sure that Element::Node class is registered with the object factory.
static INITClass Initializer_ElementNode(Element::Node::CLID());
// Alias for Element::Node class
typedef Element::Node Node;
/**
* \class ReadInfoType
* \brief Helper class for storing additional information that is required
* when reading FEM objects from stream.
*
* When an element is to be read from the input stream, we must provide
* pointers to the array of nodes and materials. When reading load objects
* we also need pointer to the array of elements. Construct object of this
* class and pass a pointer to it when calling Read virtual member function
* for any type of fem classes.
*/
class ReadInfoType
{
public:
typedef Node::ArrayType::ConstPointer NodeArrayPointer;
typedef Element::ArrayType::ConstPointer ElementArrayPointer;
typedef Material::ArrayType::ConstPointer MaterialArrayPointer;
/** Pointer to an array of nodes. */
NodeArrayPointer m_node;
/** Pointer to an array of elements */
ElementArrayPointer m_el;
/** Pointer to an array of materials. */
MaterialArrayPointer m_mat;
/** Constructor for simple object creation. */
ReadInfoType( NodeArrayPointer node_, ElementArrayPointer el_, MaterialArrayPointer mat_) :
m_node(node_), m_el(el_), m_mat(mat_) {}
};
}} // end namespace itk::fem
#endif // #ifndef __itkFEMElementBase_h
|