/usr/include/InsightToolkit/Numerics/FEM/itkFEMImageMetricLoad.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkFEMImageMetricLoad.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkFEMImageMetricLoad_h
#define __itkFEMImageMetricLoad_h
#include "itkFEMLoadElementBase.h"
#include "itkImage.h"
#include "itkTranslationTransform.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkNeighborhoodIterator.h"
#include "itkNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkDerivativeOperator.h"
#include "itkForwardDifferenceOperator.h"
#include "itkLinearInterpolateImageFunction.h"
#include "vnl/vnl_math.h"
#include <itkMutualInformationImageToImageMetric.h>
#include <itkMattesMutualInformationImageToImageMetric.h>
#include <itkMeanSquaresImageToImageMetric.h>
#include <itkNormalizedCorrelationImageToImageMetric.h>
//#include <itkMeanReciprocalSquareDifferenceImageToImageMetric.h>
namespace itk
{
namespace fem
{
/**
* \class ImageMetricLoad
* \brief General image pair load that uses the itkImageToImageMetrics.
*
* LoadImageMetric computes FEM gravity loads by using derivatives provided
* by itkImageToImageMetrics (e.g. mean squares intensity difference.)
* The function responsible for this is called Fg, as required by the FEMLoad
* standards. It takes a vnl_vector as input.
* We assume the vector input is of size 2*ImageDimension.
* The 0 to ImageDimension-1 elements contain the position, p,
* in the reference (moving) image. The next ImageDimension to 2*ImageDimension-1
* elements contain the value of the vector field at that point, v(p).
*
* Then, we evaluate the derivative at the point p+v(p) with respect to
* some region of the target (fixed) image by calling the metric with
* the translation parameters as provided by the vector field at p.
* The metrics return both a scalar similarity value and vector-valued derivative.
* The derivative is what gives us the force to drive the FEM registration.
* These values are computed with respect to some region in the Fixed image.
* This region size may be set by the user by calling SetMetricRadius.
* As the metric derivative computation evolves, performance should improve
* and more functionality will be available (such as scale selection).
*/
template<class TMoving,class TFixed>
class ImageMetricLoad : public LoadElement
{
FEM_CLASS(ImageMetricLoad,LoadElement)
public:
// Necessary typedefs for dealing with images BEGIN
typedef typename LoadElement::Float Float;
typedef TMoving MovingType;
typedef typename MovingType::ConstPointer MovingConstPointer;
typedef MovingType* MovingPointer;
typedef TFixed FixedType;
typedef FixedType* FixedPointer;
typedef typename FixedType::ConstPointer FixedConstPointer;
/** Dimensionality of input and output data is assumed to be the same. */
itkStaticConstMacro(ImageDimension, unsigned int,
MovingType::ImageDimension);
typedef ImageRegionIteratorWithIndex<MovingType> RefRegionIteratorType;
typedef ImageRegionIteratorWithIndex<FixedType> TarRegionIteratorType;
typedef NeighborhoodIterator<MovingType>
MovingNeighborhoodIteratorType;
typedef typename MovingNeighborhoodIteratorType::IndexType
MovingNeighborhoodIndexType;
typedef typename MovingNeighborhoodIteratorType::RadiusType
MovingRadiusType;
typedef NeighborhoodIterator<FixedType>
FixedNeighborhoodIteratorType;
typedef typename FixedNeighborhoodIteratorType::IndexType
FixedNeighborhoodIndexType;
typedef typename FixedNeighborhoodIteratorType::RadiusType
FixedRadiusType;
// IMAGE DATA
typedef typename MovingType::PixelType RefPixelType;
typedef typename FixedType::PixelType TarPixelType;
typedef Float PixelType;
typedef Float ComputationType;
typedef Image< RefPixelType, itkGetStaticConstMacro(ImageDimension) > RefImageType;
typedef Image< TarPixelType, itkGetStaticConstMacro(ImageDimension) > TarImageType;
typedef Image< PixelType, itkGetStaticConstMacro(ImageDimension) > ImageType;
typedef vnl_vector<Float> VectorType;
// Necessary typedefs for dealing with images END
//------------------------------------------------------------
// Set up the metrics
//------------------------------------------------------------
typedef double CoordinateRepresentationType;
typedef Transform< CoordinateRepresentationType,itkGetStaticConstMacro(ImageDimension), itkGetStaticConstMacro(ImageDimension) > TransformBaseType;
typedef TranslationTransform<CoordinateRepresentationType, itkGetStaticConstMacro(ImageDimension) > DefaultTransformType;
/** Type of supported metrics. */
typedef ImageToImageMetric<FixedType,MovingType > MetricBaseType;
typedef typename MetricBaseType::Pointer MetricBaseTypePointer;
typedef MutualInformationImageToImageMetric< MovingType, FixedType > MutualInformationMetricType;
typedef MeanSquaresImageToImageMetric< MovingType, FixedType > MeanSquaresMetricType;
typedef NormalizedCorrelationImageToImageMetric< MovingType, FixedType > NormalizedCorrelationMetricType;
typedef MeanSquaresMetricType DefaultMetricType;
typedef typename DefaultTransformType::ParametersType ParametersType;
typedef typename DefaultTransformType::JacobianType JacobianType;
//------------------------------------------------------------
// Set up an Interpolator
//------------------------------------------------------------
typedef LinearInterpolateImageFunction< MovingType, double > InterpolatorType;
/** Gradient filtering */
typedef float RealType;
typedef CovariantVector<RealType,
itkGetStaticConstMacro(ImageDimension)> GradientPixelType;
typedef Image<GradientPixelType,
itkGetStaticConstMacro(ImageDimension)> GradientImageType;
typedef SmartPointer<GradientImageType> GradientImagePointer;
typedef GradientRecursiveGaussianImageFilter< ImageType,
GradientImageType >
GradientImageFilterType;
// typedef typename GradientImageFilterType::Pointer GradientImageFilterPointer;
// FUNCTIONS
/** Set/Get the Metric. */
void SetMetric(MetricBaseTypePointer MP)
{ m_Metric=MP; }
/** Define the reference (moving) image. */
void SetMovingImage(MovingType* R)
{
m_RefImage = R;
m_RefSize=m_RefImage->GetLargestPossibleRegion().GetSize();
}
void SetMetricMovingImage(MovingType* R)
{
m_Metric->SetMovingImage( R );
m_RefSize=R->GetLargestPossibleRegion().GetSize();
}
/** Define the target (fixed) image. */
void SetFixedImage(FixedType* T)
{
m_TarImage=T;
m_TarSize=T->GetLargestPossibleRegion().GetSize();
}
void SetMetricFixedImage(FixedType* T)
{
m_Metric->SetFixedImage( T );
m_TarSize=T->GetLargestPossibleRegion().GetSize();
}
MovingPointer GetMovingImage()
{ return m_RefImage; }
FixedPointer GetFixedImage() { return m_TarImage; }
/** Define the metric region size. */
void SetMetricRadius(MovingRadiusType T) {m_MetricRadius = T; }
/** Get the metric region size. */
MovingRadiusType GetMetricRadius() { return m_MetricRadius; }
/** Set/Get methods for the number of integration points to use
* in each 1-dimensional line integral when evaluating the load.
* This value is passed to the load implementation.
*/
void SetNumberOfIntegrationPoints(unsigned int i)
{ m_NumberOfIntegrationPoints=i;}
unsigned int GetNumberOfIntegrationPoints()
{ return m_NumberOfIntegrationPoints;}
/** Set the direction of the gradient (uphill or downhill).
* E.g. the mean squares metric should be minimized while NCC and PR should be maximized.
*/
void SetSign(Float s)
{m_Sign=s;}
/** Set the sigma in a gaussian measure. */
void SetTemp(Float s)
{m_Temp=s;}
/** Scaling of the similarity energy term */
void SetGamma(Float s)
{m_Gamma=s;}
void SetSolution(Solution::ConstPointer ptr)
{ m_Solution=ptr; }
Solution::ConstPointer GetSolution()
{ return m_Solution; }
/**
* This method returns the total metric evaluated over the image with respect to the current solution.
*/
Float GetMetric (VectorType InVec);
VectorType GetPolynomialFitToMetric(VectorType PositionInElement, VectorType SolutionAtPosition);
VectorType MetricFiniteDiff(VectorType PositionInElement, VectorType SolutionAtPosition);
// FIXME - WE ASSUME THE 2ND VECTOR (INDEX 1) HAS THE INFORMATION WE WANT
Float GetSolution(unsigned int i,unsigned int which=0)
{
return m_Solution->GetSolutionValue(i,which);
}
// define the copy constructor
// ImageMetricLoad(const ImageMetricLoad& LMS);
void InitializeMetric(void);
ImageMetricLoad(); // cannot be private until we always use smart pointers
Float EvaluateMetricGivenSolution ( Element::ArrayType* el, Float step=1.0);
/**
* Compute the image based load - implemented with ITK metric derivatives.
*/
VectorType Fe1(VectorType);
VectorType Fe(VectorType,VectorType);
static Baseclass* NewImageMetricLoad(void)
{ return new ImageMetricLoad; }
/** Set/Get the metric gradient image */
//void InitializeGradientImage();
void SetMetricGradientImage(GradientImageType* g)
{ m_MetricGradientImage=g;}
GradientImageType* GetMetricGradientImage()
{ return m_MetricGradientImage;}
void PrintCurrentEnergy()
{ std:: cout << " energy " << m_Energy << std::endl;}
double GetCurrentEnergy()
{ return m_Energy; }
void SetCurrentEnergy( double e )
{ m_Energy=e; }
protected:
private:
GradientImageType* m_MetricGradientImage;
MovingPointer m_RefImage;
FixedPointer m_TarImage;
MovingRadiusType m_MetricRadius; /** used by the metric to set region size for fixed image*/
typename MovingType::SizeType m_RefSize;
typename FixedType::SizeType m_TarSize;
unsigned int m_NumberOfIntegrationPoints;
unsigned int m_SolutionIndex;
unsigned int m_SolutionIndex2;
Float m_Sign;
Float m_Temp;
Float m_Gamma;
typename Solution::ConstPointer m_Solution;
MetricBaseTypePointer m_Metric;
typename TransformBaseType::Pointer m_Transform;
typename InterpolatorType::Pointer m_Interpolator;
mutable double m_Energy;
private:
/** Dummy static int that enables automatic registration
with FEMObjectFactory. */
static const int m_DummyCLID;
};
}} // end namespace fem/itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkFEMImageMetricLoad.txx"
#endif
#endif
|