This file is indexed.

/usr/include/InsightToolkit/Numerics/FEM/itkFEMLinearSystemWrapper.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkFEMLinearSystemWrapper.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkFEMLinearSystemWrapper_h
#define __itkFEMLinearSystemWrapper_h 

#include "itkMacro.h"
#include "itkFEMSolution.h"
#include "itkFEMException.h"

#include <vector>
#include <typeinfo>
#include <string>

namespace itk {
namespace fem {


/**
 * \class LinearSystemWrapper
 * \brief Defines all functions required by Solver class to allocate,
 *        assemble and solve a linear system of equation.
 *
 * Linear system is defined as A*x=B, where A is a square matrix and F
 * is a vector. Member functions are provided to access a specific element
 * within A and B. Objects of derived classes should make appropriate calls
 * to the numeric library in implementation of virtual functions to assemble
 * and solve the linear system.
 * 
 * See comments for each virtual member for more information about how to
 * derive a new LinearSystemWrapper class. An example derived class
 * LinearSystemWrapperVNL is defined to use VNL sparse matrix representation
 * and solver.
 *
 * \sa Solver::SetLinearSystemWrapper
 */
class LinearSystemWrapper : public Solution
{
public:
  typedef LinearSystemWrapper Self;
  typedef Solution            Superclass;
  typedef Self*               Pointer;
  typedef const Self*         ConstPointer;

  typedef std::vector<unsigned int> ColumnArray;

  /**
   * Constructor for linear system, should perform any initialization that
   * is required by derived class.
   */
  LinearSystemWrapper() 
    : m_Order(0), m_NumberOfMatrices(1), m_NumberOfVectors(1), m_NumberOfSolutions(1) {}
      /* , m_PrimaryMatrixSetupFunction(0), m_PrimaryVectorSetupFunction(0), m_PrimarySolutionSetupFunction(0) {} */

  /**
   * Virtual destructor should properly destroy the object and clean up any
   * memory allocated for matrix and vector storage.
   */
  virtual ~LinearSystemWrapper() {};

  /**
   * Clear all the data (matrices) inside the system, so that the system
   * is ready to solve another problem from scratch.
   */
  virtual void Clean( void );

  /**
   * Set the order of the system.  All matrices will be of size NxN and 
   * all vectors will be of size N
   * \param N order of the linear system
   */
  void SetSystemOrder(unsigned int N) { m_Order = N; }

  /**
   * Get the order of the system
   */
  unsigned int GetSystemOrder() const { return m_Order; }

  /**
   * Set Index of matrices used by the system
   * \param nMatrices Index of matrices used by system
   */
  void SetNumberOfMatrices(unsigned int nMatrices) { m_NumberOfMatrices = nMatrices; }

  /**
   * Set the maximum number of entries permitted in a matrix
   * \param matrixIndex index of matrix to set value for
   * \param maxNonZeros maximum number of entries allowed in matrix
   * \note in general this function does nothing, however it may 
   *       redefined by the derived wrapper if necessary
   */
  //virtual void SetMaximumNonZeroValuesInMatrix(unsigned int maxNonZeroValues) = 0;

  /**
   * Get Index of matrices used by system
   */
  unsigned int GetNumberOfMatrices() { return m_NumberOfMatrices; }

  /**
   * Set Index of vectors used by the system
   * \param nVectors Index of vectors used by system
   */
  void SetNumberOfVectors(unsigned int nVectors) { m_NumberOfVectors = nVectors; }

  /**
   * Get Index of vectors used by system
   */
  unsigned int GetNumberOfVectors() { return m_NumberOfVectors; }

  /**
   * Set Index of solutions used by the system
   * \param nSolutions Index of solutions used by system
   */
  void SetNumberOfSolutions(unsigned int nSolutions) { m_NumberOfSolutions = nSolutions; }

  /**
   * Get Index of solutions used by system
   */
  unsigned int GetNumberOfSolutions() { return m_NumberOfSolutions; }

  /**
   * Initialization of the A matrix. First any existing data for matrix A 
   * must be be destroyed, and then a new matrix is created in the memory. All
   * elements in A must be set to zero. 
   *
   * \param matrixIndex index of matrix to initialize
   */
  virtual void InitializeMatrix(unsigned int matrixIndex = 0) = 0;


  /**
   * Check to see if matrix is initialized
   * \param matrixIndex index of matrix to examine
   */
  virtual bool IsMatrixInitialized(unsigned int matrixIndex = 0) = 0;

  /**
   * Free the memory from a matrix
   * \param matrixIndex index of matrix to destroy
   */
  virtual void DestroyMatrix(unsigned int matrixIndex = 0) = 0;

  /**
   * Initialization of the a vector. First any existing data for vector B
   * must be destroyed, then new vector is created in the memory. All
   * elements in B must be set to zero.
   *
   */
  virtual void InitializeVector(unsigned int vectorIndex = 0) = 0;


  /**
   * Check to see if vector is initialized
   * \param vectorIndex vector of index to examine
   */
  virtual bool IsVectorInitialized(unsigned int vectorIndex = 0) = 0;

  /**
   * Free the memory from a vector
   * \param vectorIndex index of vector to destroy
   */
  virtual void DestroyVector(unsigned int vectorIndex = 0) = 0;

  /**
   * Initialization of a solution vector.  Existing memory must be destroyed
   * and the new solution vector is created in memory.  All values should
   * be set to zero.
   * \param solutionIndex index of solution vector to initialize
   */
  virtual void InitializeSolution(unsigned int solutionIndex = 0) = 0;

  /**
   * Check to see if solution vector is initialized
   * \param solutionIndex index of solution vector to examine
   */
  virtual bool IsSolutionInitialized(unsigned int solutionIndex = 0) = 0;

  /** Free teh mememory from a solution vector
   * \param solutionIndex index of solution vector to destroy
   */
  virtual void DestroySolution(unsigned int solutionIndex = 0) = 0;

  /**
   * Virtual function to get a value of a specific element of a matrix.
   * \param i row of the element
   * \param j column of the element
   * \param matrixIndex index of matrix to get value from
   */
  virtual Float GetMatrixValue(unsigned int i, unsigned int j, unsigned int matrixIndex = 0) const = 0;

  /**
   * Virtual function to set a value of a specific element of the A matrix.
   * \param i row of the element
   * \param j column of the element
   * \param value new value of the element
   * \param matrixIndex index of matrix to set value in
   */
  virtual void SetMatrixValue(unsigned int i, unsigned int j, Float value, unsigned int matrixIndex = 0) = 0;

  /**
   * Virtual function to add a value to a specific element of the A matrix.
   * \param i row of the element
   * \param j column of the element
   * \param value value to add to the existing element
   * \param matrixIndex index of matrix to add value to
   */
  virtual void AddMatrixValue(unsigned int i, unsigned int j, Float value, unsigned int matrixIndex = 0) = 0;

  /**
   * Returns the column index (zero based) of the i-th non zero
   * (non allocated)element in a given row of A matrix. This function
   * is usefull for optimizations when sparse matrices are used. Note
   * that the value of an element with returned column index may actually
   * be equal zero.
   * \param row Row number
   * \param cols Which element in that row. Can range from 0 to number of
   *          elements allocated in a row. If this is out of range, the
   *          function returns -1.
   * \param matrixIndex Index of matrix (defaults to 0)
   */
  virtual void GetColumnsOfNonZeroMatrixElementsInRow( unsigned int row, ColumnArray& cols, unsigned int matrixIndex = 0 );

  /**
   * Virtual function to get a value of a specific element of the B vector.
   * \param i row of the element
   * \param vectorIndex index of vector to get value from
   */
  virtual Float GetVectorValue(unsigned int i, unsigned int vectorIndex = 0) const = 0;

  /**
   * Virtual function to set a value of a specific element of the B vector.
   * \param i row of the element
   * \param value new value of the element
   * \param vectorIndex index of vector to set value in
   */
  virtual void SetVectorValue(unsigned int i, Float value, unsigned int vectorIndex = 0) = 0;

  /**
   * Virtual function to add a value to a specific element of the B vector.
   * \param i row of the element
   * \param value value to add to the existing element
   * \param vectorIndex index of vector to add value to
   */
  virtual void AddVectorValue(unsigned int i, Float value, unsigned int vectorIndex = 0) = 0;

  /**
   * Virtual function to set a value of specific element of the solution
   * vector.
   * \param i element Index in solution vector
   * \param value new value of the element
   * \param solutionIndex index of solution vector to set value in
   */
  virtual void SetSolutionValue(unsigned int i, Float value, unsigned int solutionIndex = 0) = 0;

  /**
   * Virtual function to add a value of specific element of the solution
   * vector.
   * \param i element Index in solution vector
   * \param value new value of the element
   * \param solutionIndex index of solution vector to add value to
   */
  virtual void AddSolutionValue(unsigned int i, Float value, unsigned int solutionIndex = 0) = 0;

  /**
   * Solves the linear system and creates the solution vector, which can later
   * be accessed via GetSolutionValue(i,SolutionIndex) member function. Here all the major processing is
   * done with calls to external numeric library.
   * \note This function can only be called after the linear system was
   *       properly assembled.
   */
  virtual void Solve(void) = 0;

  /** 
   * Swaps access indices of any 2 matrices in the linear system
   * \param matrixIndex1 index of a matrix to swap
   * \param matrixIndex2 index of matrix to swap with
   */
  virtual void SwapMatrices(unsigned int matrixIndex1, unsigned int matrixIndex2) = 0;

  /** 
   * Copies the content of source matrix to destination matrix. Any existing
   * data in destination matrix is overwritten.
   *
   * \param matrixIndex1 index of a matrix that will be copied
   * \param matrixIndex2 index of matrix to copy to
   */
  virtual void CopyMatrix(unsigned int matrixIndex1, unsigned int matrixIndex2);

  /** 
   * Swaps access indices of any 2 vectors in the linear system
   * \param vectorIndex1 index of a vector to swap
   * \param vectorIndex2 index of vector to swap with
   */
  virtual void SwapVectors(unsigned int vectorIndex1, unsigned int vectorIndex2) = 0;

  /** 
   * Swaps access indices of any 2 solution vectors in the linear system
   * \param solutionIndex1 index of a solution vector to swap
   * \param solutionIndex2 index of solution vector to swap with
   */
  virtual void SwapSolutions(unsigned int solutionIndex1, unsigned int solutionIndex2) = 0;


  /**
   * Multiplies all elements of a matrix by a scalar
   * \param scale scalar to multiply all matrix values by
   * \param matrixIndex index of matrix to modify
   */
  virtual void ScaleMatrix(Float scale, unsigned int matrixIndex = 0);


  /**
   * Multiplies all elements of a vector by a scalar
   * \param scale scalar to multiply all vector values by
   * \param vectorIndex index of vector to modify
   */
  void ScaleVector(Float scale, unsigned int vectorIndex = 0);


  /**
   * Multiplies all elements of a solution by a scalar
   * \param scale scalar to multiply all solution values by
   * \param solutionIndex index of solution to modify
   */
  void ScaleSolution(Float scale, unsigned int solutionIndex = 0);

  /**
   * Perform a matrix*matrix operation and store the result in the linear system
   * \param leftMatrixIndex index of left matrix
   * \param rightMatrixIndex index of right matrix
   * \param resultMatrixIndex index of matrix where solution is stored
   */
  virtual void MultiplyMatrixMatrix(unsigned int resultMatrixIndex, unsigned int leftMatrixIndex, unsigned int rightMatrixIndex) = 0;

  /** 
   * Adds two matrices storing the result in the first matrix.
   *
   * \param matrixIndex1 index of a matrix to add the other matrix to
   * \param matrixIndex2 index of matrix to add
   */
  virtual void AddMatrixMatrix(unsigned int matrixIndex1, unsigned int matrixIndex2);

  /** 
   * Adds two vectors storing the result in the first vector.
   *
   * \param vectorIndex1 index of a vector to add the other vector to
   * \param vectorIndex2 index of vector to add
   */
  virtual void AddVectorVector(unsigned int vectorIndex1, unsigned int vectorIndex2);

  /**
   * Perform a matrix*vector operation and store the result in the linear system
   * \param matrixIndex index of matrix to multiply
   * \param vectorIndex index of vector to multiply
   * \param resultVectorIndex index of vector where result is store
   */
  virtual void MultiplyMatrixVector(unsigned int resultVectorIndex, unsigned int matrixIndex, unsigned int vectorIndex);

  /**
   * Copy a solution vector to a vector
   * \param solutionIndex index of solution vector to copy
   * \param vectorIndex index of vector to copy solution to
   */
  virtual void CopySolution2Vector(unsigned int solutionIndex, unsigned int vectorIndex) = 0;

  /**
   * Copy a vector to a solution vector
   * \param vectorIndex index of a vector to copy
   * \param solutionIndex index of a solution to copy the solution to
   */
  virtual void CopyVector2Solution(unsigned int vectorIndex, unsigned int solutionIndex) = 0;
  /**
   * Copy a vector
   * \param vectorSource index of a vector to copy
   * \param vectorDestination index to copy the vector to
   */
  virtual void CopyVector(unsigned int vectorSource, unsigned int vectorDestination);

  /**
   * Remove all zeros from a matrix 
   * \param matrixIndex index of matrix to remove zeros from
   * \param tempMatrixIndex index of matrix to use for temp storage space
   * \note an extra matrix must be allocated by the solver in order to use this method
   */
  virtual void OptimizeMatrixStorage(unsigned int matrixIndex, unsigned int tempMatrixIndex);

  /**
   * Reorder the Degrees of Freedom in order to reduce bandwidth of matrix
   * \param matrixIndex index of matrix to examine
   * \param newNumbering vector of new degree of freedom ordering
   */
  virtual void ReverseCuthillMckeeOrdering(ColumnArray& newNumbering, unsigned int matrixIndex = 0);

protected:

  /** Order of linear system */
  unsigned int m_Order;

  /**
   * Number of matrices used by system 
   */
  unsigned int m_NumberOfMatrices;

  /**
   * Number of vectors used by system 
   */
  unsigned int m_NumberOfVectors;

  /**
   * Number of solutions used by system 
   */
  unsigned int m_NumberOfSolutions;

  /*
   * Function used to prepare primary matrix for numerical solving 
   */
  //void (*m_PrimaryMatrixSetupFunction)(LinearSystemWrapper *lsw);

  /*
   * Function used to prepare primary vector for numerical solving 
   */
  /* void (*m_PrimaryVectorSetupFunction)(LinearSystemWrapper *lsw);*/

  /*
   * Function used to prepare primary matrix for numerical solving 
   */
  /* void (*m_PrimarySolutionSetupFunction)(LinearSystemWrapper *lsw); */

private:

  /**
   * matrix reordering utility
   */
  void CuthillMckeeOrdering(ColumnArray& newNumbering, int startingRow, unsigned int matrixIndex = 0);

  void FollowConnectionsCuthillMckeeOrdering(unsigned int rowNumber, ColumnArray& rowDegree, ColumnArray& newNumbering, unsigned int nextRowNumber, unsigned int matrixIndex = 0);

  /** Copy constructor is not allowed. */
  LinearSystemWrapper(const LinearSystemWrapper&);

  /** Asignment operator is not allowed. */
  const LinearSystemWrapper& operator= (const LinearSystemWrapper&);

};

class FEMExceptionLinearSystem : public FEMException
{
public:
  /**
   * Constructor. In order to construct this exception object, four parameters
   * must be provided: file, lineNumber, location and a detailed description
   * of the exception.
   */
  FEMExceptionLinearSystem(const char *file, unsigned int lineNumber, std::string location, std::string moreDescription);
 
  /** Virtual destructor needed for subclasses. Has to have empty throw(). */
  virtual ~FEMExceptionLinearSystem() throw() {}
  
  /** Type related information. */
  itkTypeMacro(FEMExceptionLinearSystem,FEMException);
  
};

class FEMExceptionLinearSystemBounds : public FEMException
{
public:
  /**
   * Constructor. In order to construct this exception object, five parameters
   * must be provided: file, lineNumber, location and a detailed description
   * of the exception, and the invalid index
   */
  FEMExceptionLinearSystemBounds(const char *file, unsigned int lineNumber, std::string location, std::string moreDescription, unsigned int index1);
 
  /**
   * Constructor. In order to construct this exception object, six parameters
   * must be provided: file, lineNumber, location and a detailed description
   * of the exception, the first index, and the second index   */
  FEMExceptionLinearSystemBounds(const char *file, unsigned int lineNumber, std::string location, std::string moreDescription, unsigned int index1, unsigned int index2);

  /** Virtual destructor needed for subclasses. Has to have empty throw(). */
  virtual ~FEMExceptionLinearSystemBounds() throw() {}
  
  /** Type related information. */
  itkTypeMacro(FEMExceptionLinearSystem,FEMException);
  
};

}} // end namespace itk::fem

#endif // #ifndef __itkFEMLinearSystemWrapper_h