/usr/include/InsightToolkit/Numerics/FEM/itkFEMLinearSystemWrapperItpack.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkFEMLinearSystemWrapperItpack.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkFEMLinearSystemWrapperItpack_h
#define __itkFEMLinearSystemWrapperItpack_h
#include "itkFEMSolution.h"
#include "itkFEMLinearSystemWrapper.h"
#include "itkFEMItpackSparseMatrix.h"
#include <vector>
/** Array of pointers to available solver functions */
/** typedefs from f2c.h */
typedef long integer;
typedef double doublereal;
extern "C" {
typedef
int (*ItkItpackSolverFunction)(integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, doublereal *, integer *);
}
namespace itk {
namespace fem {
/**
* \class LinearSystemWrapperItpack
* \brief LinearSystemWrapper class that uses Itpack numeric library functions
* to define and solve a sparse linear system of equations
* \sa LinearSystemWrapper
*/
class LinearSystemWrapperItpack : public LinearSystemWrapper
{
public:
/** Standard "Self" typedef. */
typedef LinearSystemWrapperItpack Self;
/** Standard "Superclass" typedef. */
typedef LinearSystemWrapper Superclass;
/** matrix representatin typedef */
typedef ItpackSparseMatrix MatrixRepresentation;
/** vector of matrices typedef */
typedef std::vector<MatrixRepresentation> MatrixHolder;
/* auto pointer to vector of matrices typedef */
/* typedef std::auto_ptr<MatrixHolder> MatrixArrayPtr; */
/** vector representation typedef */
/* typedef std::auto_ptr<double> VectorRepresentation; */
typedef double * VectorRepresentation;
/** vector of vector typedef */
typedef std::vector<VectorRepresentation> VectorHolder;
/* auto pointer to vector of vectors typedef */
/* typedef std::auto_ptr<VectorHolder> VectorArrayPtr; */
/* pointer to array of unsigned int typedef */
/* typedef std::auto_ptr<unsigned int> UnsignedIntegerArrayPtr; */
/* -----------------------------------------------------------------
*
* Routines for setting/reporting itpack parameters
*
* -----------------------------------------------------------------
*/
/**
* Set the maximum number of iterations
* \param i maximum number of iterations that may be performed
*/
void SetMaximumNumberIterations(int i) { m_IPARM[0] = i; }
/**
* Get the maximum number iterations that may be performed
*/
int GetMaximumNumberIterations() { return m_IPARM[0]; }
//void SetErrorReportingLevel(int i) { m_IPARM[1] = i; }
/**
* Get a flag indicating the type of error reporting
*/
int GetErrorReportingLevel() { return m_IPARM[1]; }
/**
* Set the communication switch - meaningless in this implementation
* \param i flag value
*/
void SetCommunicationSwitch(int i) { m_IPARM[2] = i; }
/**
* Get the communication flag - meaningless in this implementation
*/
int GetCommunicationSwitch() { return m_IPARM[2]; }
//void SetOutputNumber(int i) { m_IPARM[3] = i; }
/**
* Get the output number - meaningless in this implementation
*/
int GetOutputNumber() { return m_IPARM[3]; }
/**
* Set flag indicating symmetric matrix is being used
* \param i 1=symmetric, 0=non-symmetric
*/
void SetSymmetricMatrixFlag(int i) { m_IPARM[4] = i; }
/**
* Get flag indicating use of symmetric matrix (1=symmetric, 0=non-symmetric)
*/
int GetSymmetricMatrixFlag() { return m_IPARM[4]; }
/**
* Set flag for ???
* \param i ??
*/
void SetAdaptiveSwitch(int i) { m_IPARM[5] = i; }
/**
* Get flag indicating ??
*/
int GetAdaptiveSwitch() { return m_IPARM[5]; }
/**
* Set flag for ??
* \param i ??
*/
void SetAdaptiveCaseSwitch(int i) { m_IPARM[6] = i; }
/**
* Get flag indicating ??
*/
int GetAdaptiveCaseSwitch() { return m_IPARM[6]; }
/**
* Set size of workspace used by solver
* \param i size of the workspace vector
* \note this value is set by default
*/
void SetWorkspaceUsed(int i) { m_IPARM[7] = i; }
/**
* Get the size of the workspace used by solver
* \note after solver is called this is the amount of workspace actually used
*/
int GetWorkspaceUsed() { return m_IPARM[7]; }
/**
* Set flag indicating use of red black ordering
* \param i 1=red black ordering used, 0=not
*/
void SetRedBlackOrderingSwitch(int i) { m_IPARM[8] = i; }
/**
* Get the flag indicating use of red black ordering
*/
int GetRedBlackOrderingSwitch() { return m_IPARM[8]; }
/**
* Set flag indicating ??
* \param i ??
*/
void SetRemoveSwitch(int i) { m_IPARM[9] = i; }
/**
* Get flag indicating ??
*/
int GetRemoveSwitch() { return m_IPARM[9]; }
/**
* Set the flag indicating use of timer routines - meaningless in this implementation
* \param i flag
*/
void SetTimingSwitch(int i) { m_IPARM[10] = i; }
/**
* Get the flag indicating use of the timer routines - meaningless in this implementation
*/
int GetTimingSwitch() { return m_IPARM[10]; }
/**
* Set the flag for level of error reporting - meaningless in this implementation
* \param i flag for level of error analysis
*/
void SetErrorAnalysisSwitch(int i) { m_IPARM[11] = i; }
/**
* Get the flag for level of error reporting - meaningless in this implementation
*/
int GetErrorAnalysisSwitch() { return m_IPARM[11]; }
/**
* Set the level of accuracy for an acceptable solution
* \param i accuracy desired
*/
void SetAccuracy(double i) { m_RPARM[0] = i; }
/**
* Get the level of accuracy
*/
double GetAccuracy() { return m_RPARM[0]; }
/**
* Set ??
* \param i larges jacobian eigenvalue estimate
*/
void SetLargestJacobiEigenvalueEstimate(double i) { m_RPARM[1] = i; }
/**
* Get ??
*/
double GetLargestJacobiEigenvalueEstimate() { return m_RPARM[1]; }
/**
* Set ??
* \param i smalles jacobian eigenvalue estimate
*/
void SetSmallestJacobiEigenvalueEstimate(double i) { m_RPARM[2] = i; }
/**
* Get ??
*/
double GetSmallestJacobiEigenvalueEstimate() { return m_RPARM[2]; }
/**
* Set the damping factor used by ??
* \param i damping factor
*/
void SetDampingFactor(double i) { m_RPARM[3] = i; }
/**
* Get the damping factor used by ??
*/
double GetDampingFactor() { return m_RPARM[3]; }
/**
* Set the over-relaxation parameter ??
* \param i parameter
*/
void SetOverrelaxationParameter(double i) { m_RPARM[4] = i; }
/**
* Get the over-relaxation parameter ??
*/
double GetOverrelaxationParameter() { return m_RPARM[4]; }
/**
* Set the ??
* \param i ??
*/
void SetEstimatedSpectralRadiusSSOR(double i) { m_RPARM[5] = i; }
/**
* Get the ??
*/
double GetEstimatedSpectralRadiusSSOR() { return m_RPARM[5]; }
/**
* Set the ??
* \param i ??
*/
void SetEstimatedSpectralRadiusLU(double i) { m_RPARM[6] = i; }
/**
* Get the ??
*/
double GetEstimatedSpectralRadiusLU() { return m_RPARM[6]; }
/**
* Set the tolerance level
* \param i tolerance
*/
void SetTolerance(double i) { m_RPARM[7] = i; }
/**
* Get the tolerance level
*/
double GetTolerance() { return m_RPARM[7]; }
/**
* Set the time to convergence
* \param i ??
*/
void SetTimeToConvergence(double i) { m_RPARM[8] = i; }
/**
* Get the time to convergence
*/
double GetTimeToConvergence() { return m_RPARM[8]; }
/**
* Set the time for call
* \param i ??
*/
void SetTimeForCall(double i) { m_RPARM[9] = i; }
/**
* Get the time for call
*/
double GetTimeForCall() { return m_RPARM[9]; }
/**
* Set digits in error
* \param i number of digits in error
*/
void SetDigitsInError(double i) { m_RPARM[10] = i; }
/**
* Get the number of digits in the error
*/
double GetDigitsInError() { return m_RPARM[10]; }
/**
* Set the number of digits in the residual
* \param i number of digits in the residual
*/
void SetDigitsInResidual(double i) { m_RPARM[11] = i; }
/**
* Get the number of digits in the residual
*/
double GetDigitsInResidual() { return m_RPARM[11]; }
/**
* Set numerical solving method to jacobian conjugate gradient
*/
void JacobianConjugateGradient() { m_Method = 0; }
/**
* Set numerical solving method to jacobian semi iterative
*/
void JacobianSemiIterative() { m_Method = 1; }
/**
* Set numerical solving method to successive over-relaxation
*/
void SuccessiveOverrelaxation() { m_Method = 2; }
/**
* Set numerical solving method to symmetric successive over-relaxation
* conjugate gradient
*/
void SymmetricSuccessiveOverrelaxationConjugateGradient() { m_Method = 3; }
/**
* Set numerical solving method to symmetric successive over-relaxation
* successive over-relaxation
*/
void SymmetricSuccessiveOverrelaxationSuccessiveOverrelaxation() { m_Method = 4; }
/**
* Set numerical solving method to reduced system conjugate gradient
*/
void ReducedSystemConjugateGradient() { m_Method = 5; }
/**
* Set numerical solving method to reduced system semi-iteration */
void ReducedSystemSemiIteration() { m_Method = 6; }
/** -----------------------------------------------------------------
*
* Redefine methods defined in LinearSystemWrapper
*
* -----------------------------------------------------------------
*/
/**
* set maximum number of entires in a matrix
* \param maxNonZeroValues maximum number of entries allowed in matrix
* \note this must be called before any matrices are initialized
*/
virtual void SetMaximumNonZeroValuesInMatrix(unsigned int maxNonZeroValues) {m_MaximumNonZeroValues = maxNonZeroValues;}
void ScaleMatrix(Float scale, unsigned int matrixIndex);
/** -----------------------------------------------------------------
*
* Functions required by LinearSystemWrapper
*
* -----------------------------------------------------------------
*/
/**
* constructor
*/
LinearSystemWrapperItpack();
/**
* destructor
*/
~LinearSystemWrapperItpack();
/* memory management routines */
virtual void InitializeMatrix(unsigned int matrixIndex);
virtual bool IsMatrixInitialized(unsigned int matrixIndex);
virtual void DestroyMatrix(unsigned int matrixIndex);
virtual void InitializeVector(unsigned int vectorIndex);
virtual bool IsVectorInitialized(unsigned int vectorIndex);
virtual void DestroyVector(unsigned int vectorIndex);
virtual void InitializeSolution(unsigned int solutionIndex);
virtual bool IsSolutionInitialized(unsigned int solutionIndex);
virtual void DestroySolution(unsigned int solutionIndex);
/* assembly & solving routines */
virtual Float GetMatrixValue(unsigned int i, unsigned int j, unsigned int matrixIndex) const;
virtual void SetMatrixValue(unsigned int i, unsigned int j, Float value, unsigned int matrixIndex);
virtual void AddMatrixValue(unsigned int i, unsigned int j, Float value, unsigned int matrixIndex);
virtual void GetColumnsOfNonZeroMatrixElementsInRow( unsigned int row, ColumnArray& cols, unsigned int matrixIndex );
virtual Float GetVectorValue(unsigned int i, unsigned int vectorIndex) const;
virtual void SetVectorValue(unsigned int i, Float value, unsigned int vectorIndex);
virtual void AddVectorValue(unsigned int i, Float value, unsigned int vectorIndex);
virtual Float GetSolutionValue(unsigned int i, unsigned int solutionIndex) const;
virtual void SetSolutionValue(unsigned int i, Float value, unsigned int solutionIndex);
virtual void AddSolutionValue(unsigned int i, Float value, unsigned int solutionIndex);
virtual void Solve(void);
/* matrix & vector manipulation routines */
virtual void SwapMatrices(unsigned int matrixIndex1, unsigned int matrixIndex2);
virtual void SwapVectors(unsigned int vectorIndex1, unsigned int vectorIndex2);
virtual void SwapSolutions(unsigned int solutionIndex1, unsigned int solutionIndex2);
virtual void CopySolution2Vector(unsigned solutionIndex, unsigned int vectorIndex);
virtual void CopyVector2Solution(unsigned int vectorIndex, unsigned int solutionIndex);
virtual void MultiplyMatrixMatrix(unsigned int resultMatrixIndex, unsigned int leftMatrixIndex, unsigned int rightMatrixIndex);
virtual void MultiplyMatrixVector(unsigned int resultVectorIndex, unsigned int matrixIndex, unsigned int vectorIndex);
private:
/** pointer to vector of matrices */
MatrixHolder *m_Matrices;
/** pointer to vector of force arrays */
VectorHolder *m_Vectors;
/** pointer to vector of solution arrays */
VectorHolder *m_Solutions;
/** pointer to array of unsigned int's indicating max number of entries in each matrix */
//UnsignedIntegerArrayPtr m_MaximumNonZeroValues;
unsigned int m_MaximumNonZeroValues;
/** Array of pointers to available solver functions */
ItkItpackSolverFunction m_Methods[7];
/** flag indicating which solver function should be used */
integer m_Method;
/** vector of length 12 used to initialize various parameters on input */
integer m_IPARM[12];
/** vector of length 12 used to initialize various parameters on input */
doublereal m_RPARM[12];
};
/**
* \class FEMExceptionItpackSolver
* \brief handles errors that occur in itpack solving routines
* \sa LinearSystemWrapperItpack
* \sa FEMException
*/
class FEMExceptionItpackSolver : public FEMException
{
public:
/** typedefs from f2c.h */
typedef long integer;
/**
* Constructor. In order to construct this exception object, four parameters
* must be provided: file, lineNumber, location and a detailed description
* of the exception.
*/
FEMExceptionItpackSolver(const char *file, unsigned int lineNumber, std::string location, integer errorCode);
/** Virtual destructor needed for subclasses. Has to have empty throw(). */
virtual ~FEMExceptionItpackSolver() throw() {}
/** Type related information. */
itkTypeMacro(FEMExceptionItpackSolver,FEMException);
};
}} // end namespace itk::fem
#endif // #ifndef __itkFEMLinearSystemWrapperItpack_h
|