This file is indexed.

/usr/include/InsightToolkit/Numerics/FEM/itkFEMLinearSystemWrapperItpack.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkFEMLinearSystemWrapperItpack.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkFEMLinearSystemWrapperItpack_h
#define __itkFEMLinearSystemWrapperItpack_h

#include "itkFEMSolution.h"
#include "itkFEMLinearSystemWrapper.h"
#include "itkFEMItpackSparseMatrix.h"
#include <vector>

/** Array of pointers to available solver functions */
/** typedefs from f2c.h  */
typedef long      integer;
typedef double    doublereal;

extern "C" {
  typedef  
  int (*ItkItpackSolverFunction)(integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, 
                                 integer *, doublereal *, integer *);
}


namespace itk {
namespace fem {

/**
 * \class LinearSystemWrapperItpack
 * \brief LinearSystemWrapper class that uses Itpack numeric library functions
 *        to define and solve a sparse linear system of equations
 * \sa LinearSystemWrapper
 */
class LinearSystemWrapperItpack : public LinearSystemWrapper
{
public:
 
  /** Standard "Self" typedef. */
  typedef LinearSystemWrapperItpack Self;

  /** Standard "Superclass" typedef. */
  typedef LinearSystemWrapper Superclass;

  /** matrix representatin typedef */
  typedef ItpackSparseMatrix MatrixRepresentation;

  /** vector of matrices typedef */
  typedef std::vector<MatrixRepresentation> MatrixHolder;

  /* auto pointer to vector of matrices typedef */
  /* typedef std::auto_ptr<MatrixHolder> MatrixArrayPtr; */

  /** vector representation typedef */
  /* typedef std::auto_ptr<double> VectorRepresentation; */
  typedef double * VectorRepresentation;

  /** vector of vector typedef */
  typedef std::vector<VectorRepresentation> VectorHolder;

  /* auto pointer to vector of vectors typedef */
  /* typedef std::auto_ptr<VectorHolder> VectorArrayPtr; */

  /* pointer to array of unsigned int typedef */
  /* typedef std::auto_ptr<unsigned int> UnsignedIntegerArrayPtr; */

  /* -----------------------------------------------------------------
   * 
   * Routines for setting/reporting itpack parameters 
   *
   * ----------------------------------------------------------------- 
   */

  /**
   * Set the maximum number of iterations
   * \param i maximum number of iterations that may be performed
   */
  void SetMaximumNumberIterations(int i) {   m_IPARM[0] = i; }

  /**
   * Get the maximum number iterations that may be performed
   */
  int  GetMaximumNumberIterations() { return m_IPARM[0]; }

  //void SetErrorReportingLevel(int i) {   m_IPARM[1] = i; }

  /**
   * Get a flag indicating the type of error reporting 
   */
  int  GetErrorReportingLevel() { return m_IPARM[1]; }

  /**
   * Set the communication switch - meaningless in this implementation
   * \param i flag value
   */
  void SetCommunicationSwitch(int i) {   m_IPARM[2] = i; }

  /**
   * Get the communication flag - meaningless in this implementation
   */
  int  GetCommunicationSwitch() { return m_IPARM[2]; }

  //void SetOutputNumber(int i) {   m_IPARM[3] = i; }

  /**
   * Get the output number - meaningless in this implementation
   */
  int  GetOutputNumber() { return m_IPARM[3]; }

  /**
   * Set flag indicating symmetric matrix is being used
   * \param i 1=symmetric, 0=non-symmetric
   */
  void SetSymmetricMatrixFlag(int i) {   m_IPARM[4] = i; }

  /** 
   * Get flag indicating use of symmetric matrix (1=symmetric, 0=non-symmetric)
   */
  int  GetSymmetricMatrixFlag() { return m_IPARM[4]; }

  /**
   * Set flag for ???
   * \param i ??
   */
  void SetAdaptiveSwitch(int i) {   m_IPARM[5] = i; }

  /**
   * Get flag indicating ??
   */
  int  GetAdaptiveSwitch() { return m_IPARM[5]; }

  /**
   * Set flag for ??
   * \param i ??
   */
  void SetAdaptiveCaseSwitch(int i) {   m_IPARM[6] = i; }

  /**
   * Get flag indicating ??
   */
  int  GetAdaptiveCaseSwitch() { return m_IPARM[6]; }

  /**
   * Set size of workspace used by solver
   * \param i size of the workspace vector
   * \note this value is set by default
   */
  void SetWorkspaceUsed(int i) {   m_IPARM[7] = i; }

  /**
   * Get the size of the workspace used by solver
   * \note after solver is called this is the amount of workspace actually used
   */
  int  GetWorkspaceUsed() { return m_IPARM[7]; }

  /**
   * Set flag indicating use of red black ordering
   * \param i 1=red black ordering used, 0=not
   */
  void SetRedBlackOrderingSwitch(int i) {   m_IPARM[8] = i; }

  /**
   * Get the flag indicating use of red black ordering
   */
  int  GetRedBlackOrderingSwitch() { return m_IPARM[8]; }

  /**
   * Set flag indicating ??
   * \param i ??
   */
  void SetRemoveSwitch(int i) {   m_IPARM[9] = i; }

  /**
   * Get flag indicating ??
   */
  int  GetRemoveSwitch() { return m_IPARM[9]; }

  /**
   * Set the flag indicating use of timer routines - meaningless in this implementation
   * \param i flag
   */
  void SetTimingSwitch(int i) {   m_IPARM[10] = i; }

  /**
   * Get the flag indicating use of the timer routines - meaningless in this implementation
   */
  int  GetTimingSwitch() { return m_IPARM[10]; }

  /**
   * Set the flag for level of error reporting - meaningless in this implementation
   * \param i flag for level of error analysis
   */
  void SetErrorAnalysisSwitch(int i) {   m_IPARM[11] = i; }

  /**
   * Get the flag for level of error reporting - meaningless in this implementation
   */
  int  GetErrorAnalysisSwitch() { return m_IPARM[11]; }

  /**
   * Set the level of accuracy for an acceptable solution
   * \param i accuracy desired
   */
  void   SetAccuracy(double i) {   m_RPARM[0] = i; }

  /**
   * Get the level of accuracy
   */
  double GetAccuracy()    { return m_RPARM[0]; }

  /**
   * Set ??
   * \param i larges jacobian eigenvalue estimate
   */
  void   SetLargestJacobiEigenvalueEstimate(double i) {   m_RPARM[1] = i; }

  /**
   * Get ??
   */
  double GetLargestJacobiEigenvalueEstimate()    { return m_RPARM[1]; }

  /**
   * Set ??
   * \param i smalles jacobian eigenvalue estimate
   */
  void   SetSmallestJacobiEigenvalueEstimate(double i) {   m_RPARM[2] = i; }

  /**
   * Get ??
   */
  double GetSmallestJacobiEigenvalueEstimate()    { return m_RPARM[2]; }

  /**
   * Set the damping factor used by ??
   * \param i damping factor
   */
  void   SetDampingFactor(double i) {   m_RPARM[3] = i; }

  /**
   * Get the damping factor used by ??
   */
  double GetDampingFactor()    { return m_RPARM[3]; }

  /**
   * Set the over-relaxation parameter ??
   * \param i parameter
   */
  void   SetOverrelaxationParameter(double i) {   m_RPARM[4] = i; }

  /**
   * Get the over-relaxation parameter ??
   */
  double GetOverrelaxationParameter()    { return m_RPARM[4]; }

  /**
   * Set the ??
   * \param i ??
   */
  void   SetEstimatedSpectralRadiusSSOR(double i) {   m_RPARM[5] = i; }

  /**
   * Get the ??
   */
  double GetEstimatedSpectralRadiusSSOR()    { return m_RPARM[5]; }

  /**
   * Set the ??
   * \param i ??
   */
  void   SetEstimatedSpectralRadiusLU(double i) {   m_RPARM[6] = i; }

  /**
   * Get the ??
   */
  double GetEstimatedSpectralRadiusLU()    { return m_RPARM[6]; }

  /**
   * Set the tolerance level
   * \param i tolerance
   */
  void   SetTolerance(double i) {   m_RPARM[7] = i; }

  /**
   * Get the tolerance level
   */
  double GetTolerance()    { return m_RPARM[7]; }

  /**
   * Set the time to convergence
   * \param i ??
   */
  void   SetTimeToConvergence(double i) {   m_RPARM[8] = i; }

  /**
   * Get the time to convergence
   */
  double GetTimeToConvergence()    { return m_RPARM[8]; }

  /**
   * Set the time for call
   * \param i ??
   */
  void   SetTimeForCall(double i) {   m_RPARM[9] = i; }

  /**
   * Get the time for call
   */
  double GetTimeForCall()    { return m_RPARM[9]; }

  /**
   * Set digits in error
   * \param i number of digits in error
   */
  void   SetDigitsInError(double i) {   m_RPARM[10] = i; }

  /**
   * Get the number of digits in the error
   */
  double GetDigitsInError()    { return m_RPARM[10]; }

  /**
   * Set the number of digits in the residual
   * \param i number of digits in the residual
   */
  void   SetDigitsInResidual(double i) {   m_RPARM[11] = i; }

  /**
   * Get the number of digits in the residual
   */
  double GetDigitsInResidual()    { return m_RPARM[11]; }

  /** 
   * Set numerical solving method to jacobian conjugate gradient 
   */
  void JacobianConjugateGradient() { m_Method = 0; }

  /** 
   * Set numerical solving method to jacobian semi iterative
   */
  void JacobianSemiIterative() { m_Method = 1; }

  /** 
   * Set numerical solving method to successive over-relaxation
   */
  void SuccessiveOverrelaxation() { m_Method = 2; }

  /** 
   * Set numerical solving method to symmetric successive over-relaxation
   * conjugate gradient 
   */
  void SymmetricSuccessiveOverrelaxationConjugateGradient() { m_Method = 3; }

  /** 
   * Set numerical solving method to symmetric successive over-relaxation
   * successive over-relaxation
   */
  void SymmetricSuccessiveOverrelaxationSuccessiveOverrelaxation() { m_Method = 4; }

  /** 
   * Set numerical solving method to reduced system conjugate gradient 
   */
  void ReducedSystemConjugateGradient() { m_Method = 5; }

  /** 
   * Set numerical solving method to reduced system semi-iteration */
  void ReducedSystemSemiIteration() { m_Method = 6; }


  /** -----------------------------------------------------------------
   * 
   * Redefine methods defined in LinearSystemWrapper 
   *
   * ----------------------------------------------------------------- 
   */

  /**
   * set maximum number of entires in a matrix
   * \param maxNonZeroValues maximum number of entries allowed in matrix
   * \note this must be called before any matrices are initialized
   */  
  virtual void SetMaximumNonZeroValuesInMatrix(unsigned int maxNonZeroValues) {m_MaximumNonZeroValues = maxNonZeroValues;}


  void ScaleMatrix(Float scale, unsigned int matrixIndex);


  /** -----------------------------------------------------------------
   * 
   * Functions required by LinearSystemWrapper 
   *
   * ----------------------------------------------------------------- 
   */

  /**
   * constructor 
   */
  LinearSystemWrapperItpack();
  
  /**
   * destructor
   */
  ~LinearSystemWrapperItpack();


  /* memory management routines */
  virtual void  InitializeMatrix(unsigned int matrixIndex);  

  virtual bool  IsMatrixInitialized(unsigned int matrixIndex);

  virtual void  DestroyMatrix(unsigned int matrixIndex);

  virtual void  InitializeVector(unsigned int vectorIndex);

  virtual bool  IsVectorInitialized(unsigned int vectorIndex);

  virtual void  DestroyVector(unsigned int vectorIndex);

  virtual void  InitializeSolution(unsigned int solutionIndex);

  virtual bool  IsSolutionInitialized(unsigned int solutionIndex);

  virtual void  DestroySolution(unsigned int solutionIndex);

  /* assembly & solving routines */
  virtual Float GetMatrixValue(unsigned int i, unsigned int j, unsigned int matrixIndex) const;

  virtual void  SetMatrixValue(unsigned int i, unsigned int j, Float value, unsigned int matrixIndex);

  virtual void  AddMatrixValue(unsigned int i, unsigned int j, Float value, unsigned int matrixIndex);

  virtual void GetColumnsOfNonZeroMatrixElementsInRow( unsigned int row, ColumnArray& cols, unsigned int matrixIndex );

  virtual Float GetVectorValue(unsigned int i, unsigned int vectorIndex) const;

  virtual void  SetVectorValue(unsigned int i, Float value, unsigned int vectorIndex);

  virtual void  AddVectorValue(unsigned int i, Float value, unsigned int vectorIndex);

  virtual Float GetSolutionValue(unsigned int i, unsigned int solutionIndex) const;

  virtual void  SetSolutionValue(unsigned int i, Float value, unsigned int solutionIndex);

  virtual void  AddSolutionValue(unsigned int i, Float value, unsigned int solutionIndex);

  virtual void  Solve(void);


  /* matrix & vector manipulation routines */
  virtual void  SwapMatrices(unsigned int matrixIndex1, unsigned int matrixIndex2);

  virtual void  SwapVectors(unsigned int vectorIndex1, unsigned int vectorIndex2);

  virtual void  SwapSolutions(unsigned int solutionIndex1, unsigned int solutionIndex2);

  virtual void  CopySolution2Vector(unsigned solutionIndex, unsigned int vectorIndex);

  virtual void  CopyVector2Solution(unsigned int vectorIndex, unsigned int solutionIndex);

  virtual void  MultiplyMatrixMatrix(unsigned int resultMatrixIndex, unsigned int leftMatrixIndex, unsigned int rightMatrixIndex);

  virtual void  MultiplyMatrixVector(unsigned int resultVectorIndex, unsigned int matrixIndex, unsigned int vectorIndex);

private:

  /** pointer to vector of matrices */
  MatrixHolder *m_Matrices;

  /** pointer to vector of force arrays */
  VectorHolder *m_Vectors;

  /** pointer to vector of solution arrays */
  VectorHolder *m_Solutions;

  /** pointer to array of unsigned int's indicating max number of entries in each matrix */
  //UnsignedIntegerArrayPtr m_MaximumNonZeroValues;
  unsigned int m_MaximumNonZeroValues;

  /** Array of pointers to available solver functions */
  ItkItpackSolverFunction    m_Methods[7];

  /** flag indicating which solver function should be used */
  integer m_Method;

  /** vector of length 12 used to initialize various parameters on input */
  integer m_IPARM[12];

  /** vector of length 12 used to initialize various parameters on input */
  doublereal m_RPARM[12];

};

/**
 * \class FEMExceptionItpackSolver
 * \brief handles errors that occur in itpack solving routines
 * \sa LinearSystemWrapperItpack
 * \sa FEMException
 */
class FEMExceptionItpackSolver : public FEMException
{
public:
  /** typedefs from f2c.h  */
  typedef long      integer;

  /**
   * Constructor. In order to construct this exception object, four parameters
   * must be provided: file, lineNumber, location and a detailed description
   * of the exception.
   */
  FEMExceptionItpackSolver(const char *file, unsigned int lineNumber, std::string location, integer errorCode);
 
  /** Virtual destructor needed for subclasses. Has to have empty throw(). */
  virtual ~FEMExceptionItpackSolver() throw() {}
  
  /** Type related information. */
  itkTypeMacro(FEMExceptionItpackSolver,FEMException);
  
};
}} // end namespace itk::fem

#endif // #ifndef __itkFEMLinearSystemWrapperItpack_h