/usr/include/InsightToolkit/Numerics/FEM/itkFEMSolver.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkFEMSolver.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkFEMSolver_h
#define __itkFEMSolver_h
#include "itkFEMElementBase.h"
#include "itkFEMMaterialBase.h"
#include "itkFEMLoadBase.h"
#include "itkFEMLinearSystemWrapper.h"
#include "itkFEMLinearSystemWrapperVNL.h"
#include "itkImage.h"
namespace itk {
namespace fem {
/**
* \class Solver
* \brief Main FEM solver
*
* This is the main class used for solving the FEM problems. It also stores
* all the objects that define the specific FEM problem. Normally there is
* one Solver object for each FEM problem.
*/
class Solver
{
public:
/**
* Local float type
*/
typedef Element::Float Float;
/**
* Array that holds pointers to all elements. since we want to be
* able to manipulate the array we have to use special pointers
*/
typedef Element::ArrayType ElementArray;
ElementArray el;
/**
* Array that holds special pointers to the nodes
*/
typedef Node::ArrayType NodeArray;
NodeArray node;
/**
* Array that holds special pointers to all external loads
*/
typedef Load::ArrayType LoadArray;
LoadArray load;
/**
* Array that holds pointers to the materials
*/
typedef Material::ArrayType MaterialArray;
MaterialArray mat;
/**
* VectorType from the Element base class
*/
typedef Element::VectorType VectorType;
/**
* Since the itk::Image is templated over the number of dimensions, we
* have to know this at compile time. Solver class, however, can handle
* elements in any number of dimensions. In order to be able to use the Image,
* we choose the maximum number of space dimension that this function will
* be able to handle. Any unused dimensions are filled with zero.
*
* For example: If a 2D node coordinates are {1.0,3.0} then the corresponding
* phisycal point in an image is {1.0,3.0,0.0};
*/
itkStaticConstMacro(MaxGridDimensions, unsigned int, 3);
/**
* Type used to store interpolation grid
*/
typedef itk::Image<Element::ConstPointer,MaxGridDimensions> InterpolationGridType;
/**
* Initialize the interpolation grid. The interpolation grid is used to
* find elements that containg specific points in a mesh. The interpolation
* grid stores pointers to elements for each point on a grid thereby providing
* a fast way (lookup table) to perform interpolation of results.
*
* \note Interpolation grid must be reinitialized each time a mesh changes.
*
* \param size Vector that represents number of points on a grid in each dimension.
* \param bb1 Lower limit of a bounding box of a grid.
* \param bb2 Upper limit of a bounding box of a grid.
*
* \sa GetInterpolationGrid
*/
void InitializeInterpolationGrid(const VectorType& size, const VectorType& bb1, const VectorType& bb2);
/**
* Same as InitializeInterpolationGrid(size, {0,0...}, size);
*/
void InitializeInterpolationGrid(const VectorType& size)
{
InitializeInterpolationGrid(size, VectorType(size.size(),0.0), size-1.0);
}
/**
* Returns pointer to interpolation grid, which is an itk::Image of pointers
* to Element objects. Normally you would use physical coordinates to get
* specific points (pointers to elements) from the image. You can then
* use the Elemenet::InterpolateSolution member function on the returned
* element to obtain the solution at this point.
*
* \note Physical coordinates in an image correspond to the global
* coordinate system in which the mesh (nodes) are.
*/
const InterpolationGridType * GetInterpolationGrid(void) const
{ return m_InterpolationGrid.GetPointer(); }
/**
* Returns the pointer to the element which contains global point pt.
*
* \param pt Point in global coordinate system.
*
* \note Interpolation grid must be initializes before you can
* call this function.
*/
const Element * GetElementAtPoint(const VectorType& pt) const;
/**
* Reads the whole system (nodes, materials and elements) from input stream
*/
void Read( std::istream& f );
/**
* Writes everything (nodes, materials and elements) to output stream
*/
void Write( std::ostream& f );
/**
* Cleans all data members, and initializes the solver to initial state.
*/
virtual void Clear( void );
/**
* System solver functions. Call all six functions below (in listed order) to solve system.
*/
/**
* Assign a global freedom numbers to each DOF in a system.
* This must be done before any other solve function can be called.
*/
void GenerateGFN( void );
/**
* Assemble the master stiffness matrix (also apply the MFCs to K)
*/
void AssembleK( void );
/**
* This function is called before assembling the matrices. You can
* override it in a derived class to account for special needs.
*
* \param N Size of the matrix.
*/
virtual void InitializeMatrixForAssembly(unsigned int N);
/**
* This function is called after the assebly has been completed.
* In this class it is only used to apply the BCs. You may however
* use it to perform other stuff in derived solver classes.
*/
virtual void FinalizeMatrixAfterAssembly( void )
{
// Apply the boundary conditions to the K matrix
this->ApplyBC();
}
/**
* Copy the element stiffness matrix into the correct position in the
* master stiffess matrix. Since more complex Solver classes may need to
* assemble many matrices and may also do some funky stuff to them, this
* function is virtual and can be overriden in a derived solver class.
*/
virtual void AssembleElementMatrix(Element::Pointer e);
/**
* Add the contribution of the landmark-containing elements to the
* correct position in the master stiffess matrix. Since more
* complex Solver classes may need to assemble many matrices and may
* also do some funky stuff to them, this function is virtual and
* can be overriden in a derived solver class.
*/
virtual void AssembleLandmarkContribution(Element::Pointer e, float);
/**
* Apply the boundary conditions to the system.
*
* \note This function must be called after AssembleK().
*
* \param matrix Index of a matrix, to which the BCs should be
* applied (master stiffness matrix). Normally this
* is zero, but in derived classes many matrices may
* be used and this index must be specified.
* \param dim This is a parameter that can be passed to the function and is
* normally used with isotropic elements to specify the
* dimension in which the DOF is fixed.
*/
void ApplyBC(int dim=0, unsigned int matrix=0);
/**
* Assemble the master force vector.
*
* \param dim This is a parameter that can be passed to the function and is
* normally used with isotropic elements to specify the
* dimension for which the master force vector should be assembled.
*/
void AssembleF(int dim=0);
/**
* Decompose matrix using svd, qr, whatever ...
*/
void DecomposeK( void );
/**
* Solve for the displacement vector u. May be overriden in derived classes.
*/
virtual void Solve( void );
/**
* Copy solution vector u to the corresponding nodal values, which are
* stored in node objects). This is standard post processing of the solution
*/
void UpdateDisplacements( void );
Float GetSolution(unsigned int i,unsigned int which=0)
{
return m_ls->GetSolutionValue(i,which);
}
unsigned int GetNumberOfDegreesOfFreedom( void )
{
return NGFN;
}
/** Get the total deformation energy using the chosen solution */
Float GetDeformationEnergy(unsigned int SolutionIndex=0);
public:
/**
* Default constructor sets Solver to use VNL linear system .
* \sa Solver::SetLinearSystemWrapper
*/
Solver();
/**
* Virtual destructor
*/
virtual ~Solver() {}
/**
* Sets the LinearSystemWrapper object that will be used when solving
* the master equation. If this function is not called, a default VNL linear
* system representation will be used (class LinearSystemWrapperVNL).
*
* \param ls Pointer to an object of class which is derived from
* LinearSystemWrapper.
*
* \note Once the LinearSystemWrapper object is changed, it is used until
* the member function SetLinearSystemWrapper is called again. Since
* LinearSystemWrapper object was created outside the Solver class, it
* should also be destroyed outside. Solver class will not destroy it
* when the Solver object is destroyed.
*/
void SetLinearSystemWrapper(LinearSystemWrapper::Pointer ls);
/**
* Gets the LinearSystemWrapper object.
*
* \sa SetLinearSystemWrapper
*/
LinearSystemWrapper::Pointer GetLinearSystemWrapper() { return m_ls; }
/**
* Performs any initialization needed for LinearSystemWrapper
* object i.e. sets the maximum number of matrices and vectors.
*/
virtual void InitializeLinearSystemWrapper(void);
/**
* Returns the time step used for dynamic problems.
*/
virtual Float GetTimeStep( void ) const { return 0.0; }
/**
* Sets the time step used for dynamic problems.
*
* \param dt New time step.
*/
virtual void SetTimeStep(Float) {}
protected:
/**
* Number of global degrees of freedom in a system
*/
unsigned int NGFN;
/**
* Number of multi freedom constraints in a system.
* This member is set in a AssembleK function.
*/
unsigned int NMFC;
/** Pointer to LinearSystemWrapper object. */
LinearSystemWrapper::Pointer m_ls;
private:
/**
* LinearSystemWrapperVNL object that is used by default in Solver class.
*/
LinearSystemWrapperVNL m_lsVNL;
/**
* An Image of pointers to Element objects that represents a grid used
* for interpolation of solution. Each Pixel in an image is a pointer to
* an Element object in which that pixel is located.
*/
InterpolationGridType::Pointer m_InterpolationGrid;
};
}} // end namespace itk::fem
#endif // #ifndef __itkFEMSolver_h
|