/usr/include/InsightToolkit/Numerics/itkGradientDescentOptimizer.h is in libinsighttoolkit3-dev 3.20.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkGradientDescentOptimizer.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGradientDescentOptimizer_h
#define __itkGradientDescentOptimizer_h
#include "itkSingleValuedNonLinearOptimizer.h"
#include <string>
namespace itk
{
/** \class GradientDescentOptimizer
* \brief Implement a gradient descent optimizer
*
* GradientDescentOptimizer implements a simple gradient descent optimizer.
* At each iteration the current position is updated according to
*
* \f[
* p_{n+1} = p_n
* + \mbox{learningRate}
\, \frac{\partial f(p_n) }{\partial p_n}
* \f]
*
* The learning rate is a fixed scalar defined via SetLearningRate().
* The optimizer steps through a user defined number of iterations;
* no convergence checking is done.
*
* Additionally, user can scale each component of the df / dp
* but setting a scaling vector using method SetScale().
*
* \sa RegularStepGradientDescentOptimizer
*
* \ingroup Numerics Optimizers
*/
class ITK_EXPORT GradientDescentOptimizer :
public SingleValuedNonLinearOptimizer
{
public:
/** Standard class typedefs. */
typedef GradientDescentOptimizer Self;
typedef SingleValuedNonLinearOptimizer Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro( GradientDescentOptimizer, SingleValuedNonLinearOptimizer );
/** Codes of stopping conditions */
typedef enum
{
MaximumNumberOfIterations,
MetricError
} StopConditionType;
/** Methods to configure the cost function. */
itkGetConstReferenceMacro( Maximize, bool );
itkSetMacro( Maximize, bool );
itkBooleanMacro( Maximize );
bool GetMinimize( ) const
{ return !m_Maximize; }
void SetMinimize(bool v)
{ this->SetMaximize(!v); }
void MinimizeOn()
{ this->MaximizeOff(); }
void MinimizeOff()
{ this->MaximizeOn(); }
/** Advance one step following the gradient direction. */
virtual void AdvanceOneStep( void );
/** Start optimization. */
void StartOptimization( void );
/** Resume previously stopped optimization with current parameters
* \sa StopOptimization. */
void ResumeOptimization( void );
/** Stop optimization.
* \sa ResumeOptimization */
void StopOptimization( void );
/** Set the learning rate. */
itkSetMacro( LearningRate, double );
/** Get the learning rate. */
itkGetConstReferenceMacro( LearningRate, double);
/** Set the number of iterations. */
itkSetMacro( NumberOfIterations, unsigned long );
/** Get the number of iterations. */
itkGetConstReferenceMacro( NumberOfIterations, unsigned long );
/** Get the current iteration number. */
itkGetConstMacro( CurrentIteration, unsigned long );
/** Get the current value. */
itkGetConstReferenceMacro( Value, double );
/** Get Stop condition. */
itkGetConstReferenceMacro( StopCondition, StopConditionType );
const std::string GetStopConditionDescription() const;
/** Get Gradient condition. */
itkGetConstReferenceMacro( Gradient, DerivativeType );
protected:
GradientDescentOptimizer();
virtual ~GradientDescentOptimizer() {};
void PrintSelf(std::ostream& os, Indent indent) const;
// made protected so subclass can access
DerivativeType m_Gradient;
bool m_Maximize;
double m_LearningRate;
private:
GradientDescentOptimizer(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
bool m_Stop;
double m_Value;
StopConditionType m_StopCondition;
unsigned long m_NumberOfIterations;
unsigned long m_CurrentIteration;
OStringStream m_StopConditionDescription;
};
} // end namespace itk
#endif
|