This file is indexed.

/usr/include/InsightToolkit/Numerics/itkLBFGSBOptimizer.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkLBFGSBOptimizer.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkLBFGSBOptimizer_h
#define __itkLBFGSBOptimizer_h

#include "itkSingleValuedNonLinearVnlOptimizer.h"

namespace itk
{

/** \class LBFGSBOptimizerHelper
 * \brief Wrapper helper around vnl_lbfgsb.
 *
 * This class is used to translate iteration events, etc, from
 * vnl_lbfgsb into iteration events in ITK.
 */
class ITK_EXPORT LBFGSBOptimizerHelper;


/** \class LBFGSBOptimizer
 * \brief Limited memory Broyden Fletcher Goldfarb Shannon minimization with simple bounds.
 *
 * This class is a wrapper for converted fortan code for performing limited
 * memory Broyden Fletcher Goldfarb Shannon minimization with simple bounds.
 * The algorithm miminizes a nonlinear function f(x) of n variables subject to
 * simple bound constraints of l <= x <= u.
 *
 * See also the documentation in Numerics/lbfgsb.c
 *
 * References:
 *
 * [1] R. H. Byrd, P. Lu and J. Nocedal. 
 * A Limited Memory Algorithm for Bound Constrained Optimization, (1995), 
 * SIAM Journal on Scientific and Statistical Computing , 
 * 16, 5, pp. 1190-1208. 
 *
 * [2] C. Zhu, R. H. Byrd and J. Nocedal. 
 * L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale 
 * bound constrained optimization (1997), 
 * ACM Transactions on Mathematical Software, 
 * Vol 23, Num. 4, pp. 550 - 560. 
 *
 * \ingroup Numerics Optimizers
 */
class ITK_EXPORT LBFGSBOptimizer : 
    public SingleValuedNonLinearVnlOptimizer
{
public:
  /** Standard "Self" typedef. */
  typedef LBFGSBOptimizer                     Self;
  typedef SingleValuedNonLinearVnlOptimizer   Superclass;
  typedef SmartPointer<Self>                  Pointer;
  typedef SmartPointer<const Self>            ConstPointer;
  
  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro( LBFGSBOptimizer, SingleValuedNonLinearVnlOptimizer );

  /**  BoundValue type.
   *  Use for defining the lower and upper bounds on the variables. 
   */
  typedef Array<double>             BoundValueType;

  /** BoundSelection type
   * Use for defining the boundary condition for each variables. 
   */
  typedef Array<long>                BoundSelectionType;

  /** Internal boundary value storage type */
  typedef vnl_vector<double>    InternalBoundValueType;

  /** Internal boundary selection storage type */
  typedef vnl_vector<long>      InternalBoundSelectionType;

  /** The vnl optimizer */
  typedef LBFGSBOptimizerHelper InternalOptimizerType;


  /** Start optimization with an initial value. */
  void StartOptimization( void );

  /** Plug in a Cost Function into the optimizer  */
  virtual void SetCostFunction( SingleValuedCostFunction * costFunction );

  /** Set/Get the optimizer trace flag. If set to true, the optimizer
   * prints out information every iteration.
   */
  virtual void SetTrace( bool flag );
  itkGetMacro( Trace, bool );
  itkBooleanMacro( Trace );

  /** Set the lower bound value for each variable. */
  virtual void SetLowerBound( const BoundValueType & value );
  virtual const BoundValueType & GetLowerBound();

  /** Set the upper bound value for each variable. */
  virtual void SetUpperBound( const BoundValueType & value );
  virtual const BoundValueType & GetUpperBound();

  /** Set the boundary condition for each variable, where
   * select[i] = 0 if x[i] is unbounded,
   *           = 1 if x[i] has only a lower bound,
   *           = 2 if x[i] has both lower and upper bounds, and
   *           = 3 if x[1] has only an upper bound
   */
  virtual void SetBoundSelection( const BoundSelectionType & select );
  virtual const BoundSelectionType & GetBoundSelection();

  /** Set/Get the CostFunctionConvergenceFactor. Algorithm terminates
   * when the reduction in cost function is less than factor * epsmcj
   * where epsmch is the machine precision.
   * Typical values for factor: 1e+12 for low accuracy; 
   * 1e+7 for moderate accuracy and 1e+1 for extremely high accuracy.
   */
  virtual void SetCostFunctionConvergenceFactor( double );
  itkGetMacro( CostFunctionConvergenceFactor, double );

  /** Set/Get the ProjectedGradientTolerance. Algorithm terminates
   * when the project gradient is below the tolerance. Default value
   * is 1e-5.
   */
  virtual void SetProjectedGradientTolerance( double );
  itkGetMacro( ProjectedGradientTolerance, double );

  /** Set/Get the MaximumNumberOfIterations. Default is 500 */
  virtual void SetMaximumNumberOfIterations( unsigned int );
  itkGetMacro( MaximumNumberOfIterations, unsigned int );

  /** Set/Get the MaximumNumberOfEvaluations. Default is 500 */
  virtual void SetMaximumNumberOfEvaluations( unsigned int );
  itkGetMacro( MaximumNumberOfEvaluations, unsigned int );

  /** Set/Get the MaximumNumberOfCorrections. Default is 5 */
  virtual void SetMaximumNumberOfCorrections( unsigned int );
  itkGetMacro( MaximumNumberOfCorrections, unsigned int );

  /** This optimizer does not support scaling of the derivatives. */
  void SetScales( const ScalesType & )
    {
    itkExceptionMacro( << "This optimizer does not support scales." );
    }

  /** Get the current iteration number. */
  itkGetConstReferenceMacro( CurrentIteration, unsigned int );

  /** Get the current cost function value. */
  MeasureType GetValue() const;

  /** Get the current infinity norm of the project gradient of the cost
   * function. */
  itkGetConstReferenceMacro( InfinityNormOfProjectedGradient, double );

  /** Get the reason for termination */
  const std::string GetStopConditionDescription() const;

protected:
  LBFGSBOptimizer();
  virtual ~LBFGSBOptimizer();
  void PrintSelf(std::ostream& os, Indent indent) const;

  typedef Superclass::CostFunctionAdaptorType   CostFunctionAdaptorType;

private:
  LBFGSBOptimizer(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  // give the helper access to member variables, to update iteration
  // counts, etc.
  friend class LBFGSBOptimizerHelper;

  bool                     m_Trace;
  bool                     m_OptimizerInitialized;
  InternalOptimizerType  * m_VnlOptimizer;
  mutable OStringStream    m_StopConditionDescription;
  BoundValueType           m_LowerBound;
  BoundValueType           m_UpperBound;
  BoundSelectionType       m_BoundSelection;

  double                   m_CostFunctionConvergenceFactor;
  double                   m_ProjectedGradientTolerance;
  unsigned int             m_MaximumNumberOfIterations;
  unsigned int             m_MaximumNumberOfEvaluations;
  unsigned int             m_MaximumNumberOfCorrections;

  unsigned int             m_CurrentIteration;
  double                   m_InfinityNormOfProjectedGradient;

};

} // end namespace itk

#endif