This file is indexed.

/usr/include/InsightToolkit/Numerics/itkMultipleValuedVnlCostFunctionAdaptor.h is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkMultipleValuedVnlCostFunctionAdaptor.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkMultipleValuedVnlCostFunctionAdaptor_h
#define __itkMultipleValuedVnlCostFunctionAdaptor_h

#include "itkMultipleValuedCostFunction.h"
#include "vnl/vnl_least_squares_function.h"


namespace itk
{
  
/** \class MultipleValuedVnlCostFunctionAdaptor
 * \brief This class is an Adaptor that allows to pass 
 * itk::MultipleValuedCostFunctions to vnl_optimizers expecting
 * a vnl_cost_function.
 * 
 * This class returns a single valued.
 *
 * \ingroup Numerics Optimizers
 */
class ITK_EXPORT MultipleValuedVnlCostFunctionAdaptor : 
    public vnl_least_squares_function
{
public:

  /** InternalParametersType typedef. */
  typedef   vnl_vector<double>     InternalParametersType;

  /** InternalMeasureType typedef. */
  typedef   vnl_vector<double>     InternalMeasureType;

  /** InternalGradientType typedef. */
  typedef   vnl_matrix<double>     InternalDerivativeType;

  /** MeasureType of the MultipleValuedCostFunction */
  typedef MultipleValuedCostFunction::MeasureType   MeasureType;

  /** Parameters of the MultipleValuedCostFunction */
  typedef MultipleValuedCostFunction::ParametersType ParametersType;

  /** Derivatives of the MultipleValuedCostFunction */
  typedef MultipleValuedCostFunction::DerivativeType DerivativeType;
  
  /** Scales typedef */
  typedef Array<double>             ScalesType;

  /** Constructor with size */
  MultipleValuedVnlCostFunctionAdaptor( unsigned int spaceDimension,
                                        unsigned int numberOfValues );

  /** Set the CostFunction deriving from MultipleValuedCostFunction */
  void SetCostFunction( MultipleValuedCostFunction * costFunction )
  { m_CostFunction = costFunction; }
    
  /** Get the CostFunction deriving from MultipleValuedCostFunction */
  const MultipleValuedCostFunction * GetCostFunction( void ) const
  { return m_CostFunction; }
    
  /**  Delegate computation of the value to the CostFunction. */
  virtual void f( const InternalParametersType & inparameters,
                  InternalMeasureType    & measures      );
    
  /**  Delegate computation of the gradient to the costFunction.  */
  virtual void gradf(const InternalParametersType   & inparameters,
                     InternalDerivativeType   & gradient );
    
  /**  Delegate computation of value and gradient to the costFunction.     */
  virtual void compute(const InternalParametersType   & x,
                       InternalMeasureType      * f, 
                       InternalDerivativeType   * g   );

  /**  Convert external derviative measures  into internal type */
  void ConvertExternalToInternalGradient(
    const DerivativeType         & input,
    InternalDerivativeType & output );

  /**  Convert external measures  into internal type */
  void ConvertExternalToInternalMeasures(
    const MeasureType         & input,
    InternalMeasureType & output );

  /**  Define if the Cost function should provide a customized 
       Gradient computation or the gradient can be computed internally
       using a default approach  */
  void SetUseGradient(bool);
  void UseGradientOn()  { this->SetUseGradient( true  ); }
  void UseGradientOff() { this->SetUseGradient( false ); }
  bool GetUseGradient() const;

  /** Set current parameters scaling. */
  void SetScales(const ScalesType & scales);

  /** This AddObserver method allows to simulate that this class derives from
   * an itkObject for the purpose of reporting iteration events. The goal of
   * this method is to allow ITK-vnl optimizer adaptors to get iteration events
   * despite the fact that VNL does not provide callbacks. */
  unsigned long AddObserver(const EventObject & event, Command *) const;

  /** Return the value of the last evaluation to the value of the cost function.
   *  Note that this method DOES NOT triggers a computation of the function or
   *  the derivatives, it only returns previous values. Therefore the values here
   *  are only valid after you invoke the f() or gradf() methods. */
  const MeasureType & GetCachedValue() const;
  const DerivativeType & GetCachedDerivative() const;
  const ParametersType & GetCachedCurrentParameters() const;
 
protected:

  /** This method is intended to be called by the derived classes in order to
   * notify of an iteration event to any Command/Observers */
  void ReportIteration( const EventObject & event ) const;


private:

  MultipleValuedCostFunction::Pointer   m_CostFunction;

  bool                    m_ScalesInitialized;
  ScalesType              m_Scales;
  Object::Pointer         m_Reporter;

  mutable MeasureType     m_CachedValue;
  mutable DerivativeType  m_CachedDerivative;
  mutable ParametersType  m_CachedCurrentParameters;

};  // end of Class CostFunction

    
} // end namespace itk


#endif