This file is indexed.

/usr/include/InsightToolkit/Review/Statistics/itkGaussianMixtureModelComponent.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*=========================================================================

Program:   Insight Segmentation & Registration Toolkit
Module:    itkGaussianMixtureModelComponent.txx
Language:  C++
Date:      $Date$
Version:   $Revision$

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkGaussianMixtureModelComponent_txx
#define __itkGaussianMixtureModelComponent_txx

#include <iostream>

#include "itkGaussianMixtureModelComponent.h"

namespace itk { 
namespace Statistics {
  
template< class TSample >
GaussianMixtureModelComponent< TSample >
::GaussianMixtureModelComponent()
{
  m_MeanEstimator = MeanEstimatorType::New();
  m_CovarianceEstimator = CovarianceEstimatorType::New();
  m_GaussianMembershipFunction = NativeMembershipFunctionType::New();
  this->SetMembershipFunction((MembershipFunctionType*)
                              m_GaussianMembershipFunction.GetPointer());
  m_Mean.Fill(0.0);
  m_Covariance.SetIdentity();
}

template< class TSample >
void
GaussianMixtureModelComponent< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Mean: " << m_Mean << std::endl;
  os << indent << "Covariance: " << m_Covariance << std::endl;
  os << indent << "Mean Estimator: " << m_MeanEstimator << std::endl;
  os << indent << "Covariance Estimator: " << m_CovarianceEstimator << std::endl;
  os << indent << "GaussianMembershipFunction: " << m_GaussianMembershipFunction << std::endl;
}

template< class TSample >
void
GaussianMixtureModelComponent< TSample >
::SetSample(const TSample* sample)
{
  Superclass::SetSample(sample);

  m_MeanEstimator->SetInput(sample);
  m_CovarianceEstimator->SetInput(sample);

  const MeasurementVectorSizeType measurementVectorLength = 
            sample->GetMeasurementVectorSize();
  m_GaussianMembershipFunction->SetMeasurementVectorSize( measurementVectorLength );
                                    
  MeasurementVectorTraits::SetLength( m_Mean, measurementVectorLength );
  m_Covariance.SetSize( measurementVectorLength, measurementVectorLength );
  
  m_Mean.Fill( NumericTraits< double >::Zero );
  
  m_Covariance.Fill( NumericTraits< double >::Zero );
  
  typename NativeMembershipFunctionType::MeanType mean;
  
  MeasurementVectorTraits::SetLength( mean, measurementVectorLength);
  
  for( unsigned int i=0; i < measurementVectorLength; ++i )
    {
    mean[i] = m_Mean[i];
    }
    
  m_GaussianMembershipFunction->SetMean(mean);
}

template< class TSample >
void
GaussianMixtureModelComponent< TSample >
::SetParameters(const ParametersType &parameters)
{
  Superclass::SetParameters(parameters);

  unsigned int paramIndex = 0;
  unsigned int i, j;

  bool changed = false;

  MeasurementVectorSizeType measurementVectorSize = 
          this->GetSample()->GetMeasurementVectorSize();

  for ( i = 0; i < measurementVectorSize; i++)
    {
    if ( m_Mean[i] != parameters[paramIndex] )
      {
      m_Mean[i] = parameters[paramIndex];
      changed = true;
      }

    ++paramIndex;
    }

  typename NativeMembershipFunctionType::MeanType mean;

  MeasurementVectorTraits::SetLength( mean, measurementVectorSize);

  for( i=0; i < measurementVectorSize; ++i )
    {
    mean[i] = m_Mean[i];
    }

  m_GaussianMembershipFunction->SetMean(mean);

  for ( i = 0; i < measurementVectorSize; i++ )
    {
    for ( j = 0; j < measurementVectorSize; j++ )
      {
      if ( m_Covariance.GetVnlMatrix().get(i, j) != 
           parameters[paramIndex] )
        {
        m_Covariance.GetVnlMatrix().put(i, j, parameters[paramIndex]);
        changed = true;
        }
      ++paramIndex;
      }
    }
  m_GaussianMembershipFunction->SetCovariance(m_Covariance);

  this->AreParametersModified(changed);
}


template< class TSample >
double
GaussianMixtureModelComponent< TSample >
::CalculateParametersChange()
{
  unsigned int i, j;

  typename MeanType::MeasurementVectorType meanEstimate =
                                          m_MeanEstimator->GetMean();

  CovarianceType covEstimateDecoratedObject = m_CovarianceEstimator->GetOutput();
  typename CovarianceType::MeasurementVectorType covEstimate =  covEstimateDecoratedObject->et();

  double temp;
  double changes = 0.0;
  MeasurementVectorSizeType measurementVectorSize = 
          this->GetSample()->GetMeasurementVectorSize();
  
  for ( i = 0; i < measurementVectorSize; i++)
    {
    temp = m_Mean[i] - meanEstimate[i];
    changes += temp * temp;
    }

  for ( i = 0; i < measurementVectorSize; i++ )
    {
    for ( j = 0; j < measurementVectorSize; j++ )
      {
      temp = m_Covariance.GetVnlMatrix().get(i, j) - 
        covEstimate.GetVnlMatrix().get(i, j);
      changes += temp * temp;
      }
    }

  changes = vcl_sqrt(changes);
  return changes;
}

template< class TSample >
void
GaussianMixtureModelComponent< TSample >
::GenerateData()
{
  MeasurementVectorSizeType measurementVectorSize = 
          this->GetSample()->GetMeasurementVectorSize();
  
  this->AreParametersModified(false);

  const WeightArrayType & weights = this->GetWeights();

  typename TSample::ConstIterator iter = this->GetSample()->Begin();
  typename TSample::ConstIterator end =  this->GetSample()->End();

  typename TSample::MeasurementVectorType measurements;

  while (iter != end)
    {
    measurements = iter.GetMeasurementVector(); 
    ++iter;
    }

  m_MeanEstimator->SetWeights( weights );
  m_MeanEstimator->Update();


  unsigned int i, j;
  double temp;
  double changes;
  bool changed = false;
  ParametersType parameters = this->GetFullParameters();
  int paramIndex  = 0;

  typename MeanEstimatorType::MeasurementVectorType meanEstimate = m_MeanEstimator->GetMean(); 
  for ( i = 0; i < measurementVectorSize; i++)
    {
    temp = m_Mean[i] - meanEstimate[i];
    changes = temp * temp;
    changes = vcl_sqrt(changes);
    if ( changes > this->GetMinimalParametersChange() )
      {
      changed = true;
      }
    }


  if ( changed )
    {
    m_Mean = meanEstimate; 
    for ( i = 0; i < measurementVectorSize; i++)
      {
      parameters[paramIndex] = meanEstimate[i];
      ++paramIndex;
      }
    this->AreParametersModified(true);
    }
  else
    {
    paramIndex = measurementVectorSize;
    }

  m_CovarianceEstimator->SetWeights( weights );
  m_CovarianceEstimator->Update();
  typename CovarianceEstimatorType::MatrixType covEstimate =
                      m_CovarianceEstimator->GetCovarianceMatrix(); 

  changed = false;
  for ( i = 0; i < measurementVectorSize; i++ )
    {
    for ( j = 0; j < measurementVectorSize; j++ )
      {
      temp = m_Covariance.GetVnlMatrix().get(i, j) - 
        covEstimate.GetVnlMatrix().get(i, j);
      changes = temp * temp;
      changes = vcl_sqrt(changes);
      if ( changes > this->GetMinimalParametersChange() )
        {
        changed = true;
        }
      }
    }
  
  if ( changed )
    {
    m_Covariance = covEstimate; 
    for ( i = 0; i < measurementVectorSize; i++ )
      {
      for ( j = 0; j < measurementVectorSize; j++ )
        {
        parameters[paramIndex] = covEstimate.GetVnlMatrix().get(i, j);
        ++paramIndex;
        }
      }
    this->AreParametersModified(true);
    }

  //THIS IS NEEDED TO update m_Mean and m_Covariance.SHOULD BE REMOVED 
  paramIndex = 0;
  for ( i = 0; i < measurementVectorSize; i++)
    {
    m_Mean[i] = parameters[paramIndex];
    ++paramIndex;
    }

  typename NativeMembershipFunctionType::MeanType mean;
  MeasurementVectorTraits::SetLength( mean, measurementVectorSize);

  for( i=0; i < measurementVectorSize; ++i )
    {
    mean[i] = m_Mean[i];
    }
  m_GaussianMembershipFunction->SetMean(mean);

  for (i = 0; i < measurementVectorSize; i++ )
    {
    for ( j = 0; j < measurementVectorSize; j++ )
      {
      m_Covariance.GetVnlMatrix().put(i, j, parameters[paramIndex]);
      ++paramIndex;
      }
    }
  m_GaussianMembershipFunction->SetCovariance(m_Covariance);

  Superclass::SetParameters(parameters);
}
    
} // end of namespace Statistics 
} // end of namespace itk 

#endif