This file is indexed.

/usr/include/InsightToolkit/Review/Statistics/itkMahalanobisDistanceMetric.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkMahalanobisDistanceMetric.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkMahalanobisDistanceMetric_txx
#define __itkMahalanobisDistanceMetric_txx

#include "itkMahalanobisDistanceMetric.h"

namespace itk {
namespace Statistics {

template < class TVector >
MahalanobisDistanceMetric< TVector >
::MahalanobisDistanceMetric():
  m_Epsilon( 1e-100 ),
  m_DoubleMax( 1e+20 )
{
  MeasurementVectorSizeType size;
  size = this->GetMeasurementVectorSize();

  this->m_Covariance.set_size( size,size );
  this->m_InverseCovariance.set_size( size,size );

  m_Covariance.set_identity();
  m_InverseCovariance.set_identity();
}

template < class TVector >
void
MahalanobisDistanceMetric< TVector >
::SetMean(const MeanVectorType & mean)
{
  Superclass::SetOrigin( mean );
}

template < class TVector >
const typename
MahalanobisDistanceMetric< TVector >::MeanVectorType &
MahalanobisDistanceMetric< TVector >
::GetMean() const
{
  return Superclass::GetOrigin();
}

template< class TVector >
void 
MahalanobisDistanceMetric< TVector >
::SetMeasurementVectorSize( MeasurementVectorSizeType size )
{
  this->Superclass::SetMeasurementVectorSize( size );
  this->m_Covariance.set_size( size,size );
  this->m_InverseCovariance.set_size( size,size );

  this->m_Covariance.set_identity();
  this->m_InverseCovariance.set_identity();
  this->Modified();
}


template < class TVector >
void
MahalanobisDistanceMetric< TVector >
::SetCovariance(const CovarianceMatrixType &cov)
{
  if( this->GetMeasurementVectorSize() != 0 )
    {
    if( cov.rows() != this->GetMeasurementVectorSize() ||
        cov.cols() != this->GetMeasurementVectorSize())
      {
      itkExceptionMacro( << "Size of the covariance matrix must be same as the length of"
          << " the measurement vector.");
      }
    }

  m_Covariance = cov;
  this->CalculateInverseCovariance();
}


template < class TVector >
void
MahalanobisDistanceMetric< TVector >
::SetInverseCovariance(const CovarianceMatrixType &invcov)
{
  if( this->GetMeasurementVectorSize() != 0 )
    {
    if( invcov.rows() != this->GetMeasurementVectorSize() ||
        invcov.cols() != this->GetMeasurementVectorSize() )
      {
      itkExceptionMacro( << "Size of the covariance matrix xcmust be same as the length of"
          << " each measurement vector.");
      }
    }

  // use the inverse computation
  m_Covariance = invcov;
  this->CalculateInverseCovariance();
  m_Covariance = m_InverseCovariance;
  m_InverseCovariance = invcov;
}


template < class TVector >
void
MahalanobisDistanceMetric< TVector >
::CalculateInverseCovariance()
{
  // pack the cov matrix from in_model to tmp_cov_mat
  double cov_sum = 0;
  for(unsigned int band_x = 0; band_x < m_Covariance.cols(); band_x++)
    {
    for(unsigned int band_y = 0; band_y < m_Covariance.rows(); band_y++)
      {
      cov_sum += vnl_math_abs( m_Covariance[band_x][band_y] );
      }
    }
  // check if it is a zero covariance, if it is, we make its
  // inverse as an identity matrix with diagonal elements as
  // a very large number; otherwise, inverse it
  if( cov_sum < m_Epsilon )
    {
    m_InverseCovariance.set_size( m_Covariance.rows(), m_Covariance.cols() );
    m_InverseCovariance.set_identity();
    m_InverseCovariance *= m_DoubleMax;
    }
  else
    {
    // check if num_bands == 1, if it is, we just use 1 to divide it
    if( m_Covariance.rows() < 2 )
      {
      m_InverseCovariance.set_size(1,1);
      m_InverseCovariance[0][0] = 1.0 / m_Covariance[0][0];
      }
    else
      {
      m_InverseCovariance = vnl_matrix_inverse<double>(m_Covariance);
      }
    }// end inverse calculations

}

template < class TVector >
double
MahalanobisDistanceMetric< TVector >
::Evaluate(const MeasurementVectorType &measurement) const
{

  vnl_matrix < double >  tempVec;
  vnl_matrix < double >  tempMat;

  tempVec.set_size( 1, this->GetMeasurementVectorSize());
  tempMat.set_size( 1, this->GetMeasurementVectorSize());

  // Compute |y - mean |
  for ( unsigned int i = 0; i < this->GetMeasurementVectorSize(); i++ )
    {
    tempVec[0][i] = measurement[i] - this->GetOrigin()[i];
    }

  // Compute |y - mean | * inverse(cov)
  tempMat= tempVec * m_InverseCovariance;

  // Compute |y - mean | * inverse(cov) * |y - mean|^T
  double temp;
  temp = vcl_sqrt( dot_product( tempMat.as_ref(), tempVec.as_ref()) );

  return temp;
}
template< class TVector >
inline double
MahalanobisDistanceMetric< TVector >
::Evaluate(const MeasurementVectorType &x1, const MeasurementVectorType &x2) const
{
  if( MeasurementVectorTraits::GetLength( x1 ) != this->GetMeasurementVectorSize() ||
        MeasurementVectorTraits::GetLength( x2 ) != this->GetMeasurementVectorSize())
    {
    itkExceptionMacro( << "Size of the measurement vectors is not the same as the length of"
        << " the measurement vector set in the distance metric.");
    }

  vnl_matrix < double >  tempVec;
  vnl_matrix < double >  tempMat;

  tempVec.set_size( 1, this->GetMeasurementVectorSize());
  tempMat.set_size( 1, this->GetMeasurementVectorSize());

  // Compute |x1 - x2 |
  for ( unsigned int i = 0; i < this->GetMeasurementVectorSize(); i++ )
    {
    tempVec[0][i] = x1[i] - x2[i];
    }

  // Compute |x1 - x2 | * inverse(cov)
  tempMat= tempVec * m_InverseCovariance;

  // Compute |x1 - x2 | * inverse(cov) * |x1 - x2|^T
  double temp;
  temp = vcl_sqrt( dot_product( tempMat.as_ref(), tempVec.as_ref()) );

  return temp;
} 
template < class TVector >
void
MahalanobisDistanceMetric< TVector >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  os << indent << "Covariance:        " << std::endl;
  os << this->GetCovariance() << std::endl;
  os << indent << "Inverse covariance:        " << std::endl;
  os << this->GetInverseCovariance() << std::endl;
  os << indent << "Mean:        " << std::endl;
  os << this->GetMean() << std::endl;
  os << indent << "Epsilon:        " << std::endl;
  os << this->GetEpsilon() << std::endl;
  os << indent << "Double max:        " << std::endl;
  os << this->GetDoubleMax() << std::endl;
}
} // end namespace Statistics
} // end of namespace itk


#endif