This file is indexed.

/usr/include/InsightToolkit/SpatialObject/itkGaussianSpatialObject.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGaussianSpatialObject.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGaussianSpatialObject_txx
#define __itkGaussianSpatialObject_txx

#include <math.h>
#include "itkGaussianSpatialObject.h" 

namespace itk 
{ 

/** Constructor */
template< unsigned int TDimension >
GaussianSpatialObject< TDimension >
::GaussianSpatialObject()
{
  this->SetTypeName("GaussianSpatialObject");
  this->SetDimension(TDimension);
  m_Radius = 1.0;
  m_Sigma = 1.0;
  m_Maximum = 1.0;
} 

/** Destructor */
template< unsigned int TDimension >
GaussianSpatialObject< TDimension >
::~GaussianSpatialObject()  
{
  
}

/** The z-score is the root mean square of the z-scores along
 *  each principal axis.   */
template< unsigned int TDimension >
typename GaussianSpatialObject< TDimension >::ScalarType
GaussianSpatialObject< TDimension > 
::SquaredZScore( const PointType& point ) const
{

  if( !this->SetInternalInverseTransformToWorldToIndexTransform() )
    {
    return 0;
    }

  PointType transformedPoint = 
    this->GetInternalInverseTransform()->TransformPoint(point);  
   
  ScalarType r = 0;
  for( unsigned int i=0; i<TDimension; i++ )
    {
    r += transformedPoint[i] * transformedPoint[i];
    }
  return r / ( m_Sigma * m_Sigma );
}

/** Test whether a point is inside or outside the object 
 *  For computational speed purposes, it is faster if the method does not
 *  check the name of the class and the current depth */ 
template< unsigned int TDimension >
bool 
GaussianSpatialObject< TDimension >
::IsInside( const PointType & point) const
{
  if( m_Radius < vnl_math::eps )
    {
    return false;
    }

  this->ComputeLocalBoundingBox();
  if( !this->GetBounds()->IsInside(point) )
    {
    return false;
    }
    
  if( !this->SetInternalInverseTransformToWorldToIndexTransform() )
    {
    return false;
    }

  PointType transformedPoint = 
    this->GetInternalInverseTransform()->TransformPoint(point);

  double r = 0;
  for(unsigned int i=0;i<TDimension;i++)
    {
    r += transformedPoint[i] * transformedPoint[i];
    }

  r /= ( m_Radius * m_Radius );
  
  if( r < 1.0 )
    {
    return true;
    }

  return false;
}


/** Test if the given point is inside the boundary of the spatial
 * object */
template< unsigned int TDimension >
bool 
GaussianSpatialObject< TDimension > 
::IsInside( const PointType & point, unsigned int depth, char * name ) const 
{
  itkDebugMacro( "Checking the point [" << point 
                 << "] is inside the GaussianSpatialObject" );
    
  if(name == NULL)
    {
    if(IsInside(point))
      {
      return true;
      }
    }
  else if(strstr(typeid(Self).name(), name))
    {
    if(IsInside(point))
      {
      return true;
      }
    }

  return Superclass::IsInside(point, depth, name);
} 

/** Compute the bounds of the Gaussian (as determined by the
 *  specified radius).  */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::ComputeLocalBoundingBox() const
{ 
  if( this->GetBoundingBoxChildrenName().empty() 
      || strstr(typeid(Self).name(), 
                this->GetBoundingBoxChildrenName().c_str()) )
    {
    // we need to set the minimum and maximum of the bounding box
    // the center is always inside the bounding box.  
    PointType center;
    center.Fill(0);
    center = this->GetIndexToWorldTransform()->TransformPoint(center);
    const_cast<BoundingBoxType *>(this->GetBounds())->SetMinimum(center);
    const_cast<BoundingBoxType *>(this->GetBounds())->SetMaximum(center);

    // First we compute the bounding box in the index space
    typename BoundingBoxType::Pointer bb = BoundingBoxType::New();

    PointType pntMin;
    PointType pntMax;
    unsigned int i;
    for(i=0; i<TDimension;i++)
      {
      pntMin[i]=-m_Radius;
      pntMax[i]=m_Radius;
      }
    
    bb->SetMinimum(pntMin);
    bb->SetMaximum(pntMax);

    bb->ComputeBoundingBox();

    typedef typename BoundingBoxType::PointsContainer PointsContainer;
    const PointsContainer * corners = bb->GetCorners();
    typename BoundingBoxType::PointsContainer::const_iterator 
                                                     it = corners->begin();
    while(it != corners->end())
      {
      PointType pnt = this->GetIndexToWorldTransform()->TransformPoint(*it);
      const_cast<BoundingBoxType *>(this->GetBounds())->ConsiderPoint(pnt);
      ++it;
      }
    }
  return true;
} 

/** Returns if the ellipse os evaluable at one point */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::IsEvaluableAt( const PointType & point, 
                 unsigned int depth, char * name ) const
{
  itkDebugMacro( "Checking if the ellipse is evaluable at " << point );
  return IsInside(point, depth, name);
}

/** Returns the value at one point */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::ValueAt( const PointType & point, ScalarType & value, unsigned int depth,
           char * name ) const
{
  itkDebugMacro( "Getting the value of the ellipse at " << point );
  if( IsInside(point, 0, name) )
    {
    double zsq = this->SquaredZScore(point);
    value = m_Maximum * (ScalarType)vcl_exp(-zsq / 2.0 );
    return true;
    }
  else
    {
    if( Superclass::IsEvaluableAt(point, depth, name) )
      {
      Superclass::ValueAt(point, value, depth, name);
      return true;
      }
    else
      {
      value = this->GetDefaultOutsideValue();
      return false;
      }
    }
  return false;
}


/** Returns the sigma=m_Radius level set of the Gaussian function, as an
 * EllipseSpatialObject.  */
template< unsigned int TDimension >
typename EllipseSpatialObject< TDimension >::Pointer 
GaussianSpatialObject< TDimension >
::GetEllipsoid() const
{
  typedef itk::EllipseSpatialObject< TDimension > EllipseType;
  typename EllipseType::Pointer ellipse = EllipseType::New();

  ellipse->SetRadius( m_Radius );
  
  ellipse->GetIndexToObjectTransform()->SetCenter( 
    this->GetIndexToObjectTransform()->GetCenter() );
  ellipse->GetIndexToObjectTransform()->SetMatrix( 
    this->GetIndexToObjectTransform()->GetMatrix() );
  ellipse->GetIndexToObjectTransform()->SetOffset( 
    this->GetIndexToObjectTransform()->GetOffset() );
  
  ellipse->GetObjectToWorldTransform()->SetCenter(
    this->GetObjectToWorldTransform()->GetCenter() );
  ellipse->GetObjectToWorldTransform()->SetMatrix(
    this->GetObjectToWorldTransform()->GetMatrix() );
  ellipse->GetObjectToWorldTransform()->SetOffset(
    this->GetObjectToWorldTransform()->GetOffset() );
  
  ellipse->GetIndexToWorldTransform()->SetCenter(
    this->GetIndexToWorldTransform()->GetCenter() );
  ellipse->GetIndexToWorldTransform()->SetMatrix(
    this->GetIndexToWorldTransform()->GetMatrix() );
  ellipse->GetIndexToWorldTransform()->SetOffset(
    this->GetIndexToWorldTransform()->GetOffset() );
  
  return ellipse;
}

/** Print Self function */
template< unsigned int TDimension >
void 
GaussianSpatialObject< TDimension >
::PrintSelf( std::ostream& os, Indent indent ) const
{

  Superclass::PrintSelf(os, indent);
  os << "Maximum: " << m_Maximum << std::endl;
  os << "Radius: " << m_Radius << std::endl;
  os << "Sigma: " << m_Sigma << std::endl;
}

} // end namespace itk

#endif