This file is indexed.

/usr/include/itpp/base/algebra/eigen.h is in libitpp-dev 4.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*!
 * \file
 * \brief Definitions of eigenvalue decomposition functions
 * \author Tony Ottosson
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef EIGEN_H
#define EIGEN_H

#include <itpp/base/mat.h>


namespace itpp
{

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues and eigenvectors of a symmetric real matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]
  The eigenvectors are the columns of the matrix V.
  True is returned if the calculation was successful. Otherwise false.

  Uses the LAPACK routine DSYEV.
*/
bool eig_sym(const mat &A, vec &d, mat &V);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues of a symmetric real matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]
  True is returned if the calculation was successful. Otherwise false.

  Uses the LAPACK routine DSYEV.
*/
bool eig_sym(const mat &A, vec &d);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues of a symmetric real matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]

  Uses the LAPACK routine DSYEV.
*/
vec eig_sym(const mat &A);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues and eigenvectors of a hermitian complex matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]
  The eigenvectors are the columns of the matrix V.
  True is returned if the calculation was successful. Otherwise false.

  Uses the LAPACK routine ZHEEV.
*/
bool eig_sym(const cmat &A, vec &d, cmat &V);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues of a hermitian complex matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]
  True is returned if the calculation was successful. Otherwise false.

  Uses the LAPACK routine ZHEEV.
*/
bool eig_sym(const cmat &A, vec &d);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues of a hermitian complex matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]

  Uses the LAPACK routine ZHEEV.
*/
vec eig_sym(const cmat &A);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues and eigenvectors of a real non-symmetric matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]
  The eigenvectors are the columns of the matrix V.
  True is returned if the calculation was successful. Otherwise false.

  Uses the LAPACK routine DGEEV.
*/
bool eig(const mat &A, cvec &d, cmat &V);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues of a real non-symmetric matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]
  True is returned if the calculation was successful. Otherwise false.

  Uses the LAPACK routine DGEEV.
*/
bool eig(const mat &A, cvec &d);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues of a real non-symmetric matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]

  Uses the LAPACK routine DGEEV.
*/
cvec eig(const mat &A);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues and eigenvectors of a complex non-hermitian matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]
  The eigenvectors are the columns of the matrix V.
  True is returned if the calculation was successful. Otherwise false.

  Uses the LAPACK routine ZGEEV.
*/
bool eig(const cmat &A, cvec &d, cmat &V);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues of a complex non-hermitian matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]
  True is returned if the calculation was successful. Otherwise false.

  Uses the LAPACK routine ZGEEV.
*/
bool eig(const cmat &A, cvec &d);

/*!
  \ingroup matrixdecomp
  \brief Calculates the eigenvalues of a complex non-hermitian matrix

  The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
  \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$
  matrix \f$\mathbf{A}\f$ satisfies
  \f[
  \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
  \f]

  Uses the LAPACK routine ZGEEV.
*/
cvec eig(const cmat &A);

} // namespace itpp

#endif // #ifndef EIGEN_H