This file is indexed.

/usr/include/itpp/base/algebra/lu.h is in libitpp-dev 4.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
/*!
 * \file
 * \brief Definitions of LU factorisation functions
 * \author Tony Ottosson
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef LU_H
#define LU_H

#include <itpp/base/mat.h>


namespace itpp
{


/*! \addtogroup matrixdecomp
 */
//!@{
/*!
  \brief LU factorisation of real matrix

  The LU factorization of the real matrix \f$\mathbf{X}\f$ of size \f$n \times n\f$ is given
  by
  \f[
  \mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} ,
  \f]
  where \f$\mathbf{L}\f$ and \f$\mathbf{U}\f$ are lower and upper triangular matrices
  and \f$\mathbf{P}\f$ is a permutation matrix.

  The interchange permutation vector \a p is such that \a k and \a p(k) should be
  changed for all \a k. Given this vector a permutation matrix can be constructed using the
  function
  \code
  bmat permutation_matrix(const ivec &p)
  \endcode

  If \a X is an \a n by \a n matrix \a lu(X,L,U,p) computes the LU decomposition.
  \a L is a lower triangular, \a U an upper triangular matrix.
  \a p is the interchange permutation vector such that \a k and \a p(k) should be
  changed for all \a k.

  Returns true is calculation succeeds. False otherwise.
*/
bool lu(const mat &X, mat &L, mat &U, ivec &p);


/*!
  \brief LU factorisation of real matrix

  The LU factorization of the complex matrix \f$\mathbf{X}\f$ of size \f$n \times n\f$ is given
  by
  \f[
  \mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} ,
  \f]
  where \f$\mathbf{L}\f$ and \f$\mathbf{U}\f$ are lower and upper triangular matrices
  and \f$\mathbf{P}\f$ is a permutation matrix.

  The interchange permutation vector \a p is such that \a k and \a p(k) should be
  changed for all \a k. Given this vector a permutation matrix can be constructed using the
  function
  \code
  bmat permutation_matrix(const ivec &p)
  \endcode

  If \a X is an \a n by \a n matrix \a lu(X,L,U,p) computes the LU decomposition.
  \a L is a lower triangular, \a U an upper triangular matrix.
  \a p is the interchange permutation vector such that elements \a k and row \a p(k) should be
  interchanged.

  Returns true is calculation succeeds. False otherwise.
*/
bool lu(const cmat &X, cmat &L, cmat &U, ivec &p);


//! Makes swapping of vector b according to the interchange permutation vector p.
void interchange_permutations(vec &b, const ivec &p);

//! Make permutation matrix P from the interchange permutation vector p.
bmat permutation_matrix(const ivec &p);
//!@}

} // namespace itpp

#endif // #ifndef LU_H