/usr/include/itpp/base/matfunc.h is in libitpp-dev 4.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 | /*!
* \file
* \brief Various functions on vectors and matrices - header file
* \author Tony Ottosson, Adam Piatyszek, Conrad Sanderson, Mark Dobossy
* and Martin Senst
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef MATFUNC_H
#define MATFUNC_H
#include <itpp/base/mat.h>
#include <itpp/base/math/log_exp.h>
#include <itpp/base/math/elem_math.h>
#include <itpp/base/algebra/inv.h>
#include <itpp/base/algebra/svd.h>
namespace itpp
{
/*!
\addtogroup matrix_functions
\brief Functions on vectors and matrices
*/
//!@{
//! Length of vector
template<class T>
int length(const Vec<T> &v) { return v.length(); }
//! Length of vector
template<class T>
int size(const Vec<T> &v) { return v.length(); }
//! Sum of all elements in the vector
template<class T>
T sum(const Vec<T> &v)
{
T M = 0;
for (int i = 0;i < v.length();i++)
M += v[i];
return M;
}
/*!
* \brief Sum of elements in the matrix \c m, either along columns or rows
*
* <tt>sum(m) = sum(m, 1)</tt> returns a vector where the elements are sum
* over each column, whereas <tt>sum(m, 2)</tt> returns a vector where the
* elements are sum over each row.
*/
template<class T>
Vec<T> sum(const Mat<T> &m, int dim = 1)
{
it_assert((dim == 1) || (dim == 2), "sum: dimension need to be 1 or 2");
Vec<T> out;
if (dim == 1) {
out.set_size(m.cols(), false);
for (int i = 0; i < m.cols(); i++)
out(i) = sum(m.get_col(i));
}
else {
out.set_size(m.rows(), false);
for (int i = 0; i < m.rows(); i++)
out(i) = sum(m.get_row(i));
}
return out;
}
//! Sum of all elements in the given matrix. Fast version of sum(sum(X))
template<class T>
T sumsum(const Mat<T> &X)
{
const T * X_data = X._data();
const int X_datasize = X._datasize();
T acc = 0;
for (int i = 0;i < X_datasize;i++)
acc += X_data[i];
return acc;
}
//! Sum of square of the elements in a vector
template<class T>
T sum_sqr(const Vec<T> &v)
{
T M = 0;
for (int i = 0; i < v.length(); i++)
M += v[i] * v[i];
return M;
}
/*!
* \brief Sum of the square of elements in the matrix \c m
*
* <tt>sum(m) = sum(m, 1)</tt> returns a vector where the elements are sum
* squared over each column, whereas <tt>sum(m, 2)</tt> returns a vector
* where the elements are sum squared over each row
*/
template<class T>
Vec<T> sum_sqr(const Mat<T> &m, int dim = 1)
{
it_assert((dim == 1) || (dim == 2), "sum_sqr: dimension need to be 1 or 2");
Vec<T> out;
if (dim == 1) {
out.set_size(m.cols(), false);
for (int i = 0; i < m.cols(); i++)
out(i) = sum_sqr(m.get_col(i));
}
else {
out.set_size(m.rows(), false);
for (int i = 0; i < m.rows(); i++)
out(i) = sum_sqr(m.get_row(i));
}
return out;
}
//! Cumulative sum of all elements in the vector
template<class T>
Vec<T> cumsum(const Vec<T> &v)
{
Vec<T> out(v.size());
out(0) = v(0);
for (int i = 1; i < v.size(); i++)
out(i) = out(i - 1) + v(i);
return out;
}
/*!
* \brief Cumulative sum of elements in the matrix \c m
*
* <tt>cumsum(m) = cumsum(m, 1)</tt> returns a matrix where the elements
* are sums over each column, whereas <tt>cumsum(m, 2)</tt> returns a
* matrix where the elements are sums over each row
*/
template<class T>
Mat<T> cumsum(const Mat<T> &m, int dim = 1)
{
it_assert((dim == 1) || (dim == 2), "cumsum: dimension need to be 1 or 2");
Mat<T> out(m.rows(), m.cols());
if (dim == 1) {
for (int i = 0; i < m.cols(); i++)
out.set_col(i, cumsum(m.get_col(i)));
}
else {
for (int i = 0; i < m.rows(); i++)
out.set_row(i, cumsum(m.get_row(i)));
}
return out;
}
//! The product of all elements in the vector
template<class T>
T prod(const Vec<T> &v)
{
it_assert(v.size() >= 1, "prod: size of vector should be at least 1");
T out = v(0);
for (int i = 1; i < v.size(); i++)
out *= v(i);
return out;
}
/*!
* \brief Product of elements in the matrix \c m
*
* <tt>prod(m) = prod(m, 1)</tt> returns a vector where the elements are
* products over each column, whereas <tt>prod(m, 2)</tt> returns a vector
* where the elements are products over each row
*/
template<class T>
Vec<T> prod(const Mat<T> &m, int dim = 1)
{
it_assert((dim == 1) || (dim == 2), "prod: dimension need to be 1 or 2");
Vec<T> out(m.cols());
if (dim == 1) {
it_assert((m.cols() >= 1) && (m.rows() >= 1),
"prod: number of columns should be at least 1");
out.set_size(m.cols(), false);
for (int i = 0; i < m.cols(); i++)
out(i) = prod(m.get_col(i));
}
else {
it_assert((m.cols() >= 1) && (m.rows() >= 1),
"prod: number of rows should be at least 1");
out.set_size(m.rows(), false);
for (int i = 0; i < m.rows(); i++)
out(i) = prod(m.get_row(i));
}
return out;
}
//! Vector cross product. Vectors need to be of size 3
template<class T>
Vec<T> cross(const Vec<T> &v1, const Vec<T> &v2)
{
it_assert((v1.size() == 3) && (v2.size() == 3),
"cross: vectors should be of size 3");
Vec<T> r(3);
r(0) = v1(1) * v2(2) - v1(2) * v2(1);
r(1) = v1(2) * v2(0) - v1(0) * v2(2);
r(2) = v1(0) * v2(1) - v1(1) * v2(0);
return r;
}
//! Zero-pad a vector to size n
template<class T>
Vec<T> zero_pad(const Vec<T> &v, int n)
{
it_assert(n >= v.size(), "zero_pad() cannot shrink the vector!");
Vec<T> v2(n);
v2.set_subvector(0, v);
if (n > v.size())
v2.set_subvector(v.size(), n - 1, T(0));
return v2;
}
//! Zero-pad a vector to the nearest greater power of two
template<class T>
Vec<T> zero_pad(const Vec<T> &v)
{
int n = pow2i(levels2bits(v.size()));
return (n == v.size()) ? v : zero_pad(v, n);
}
//! Zero-pad a matrix to size rows x cols
template<class T>
Mat<T> zero_pad(const Mat<T> &m, int rows, int cols)
{
it_assert((rows >= m.rows()) && (cols >= m.cols()),
"zero_pad() cannot shrink the matrix!");
Mat<T> m2(rows, cols);
m2.set_submatrix(0, 0, m);
if (cols > m.cols()) // Zero
m2.set_submatrix(0, m.rows() - 1, m.cols(), cols - 1, T(0));
if (rows > m.rows()) // Zero
m2.set_submatrix(m.rows(), rows - 1, 0, cols - 1, T(0));
return m2;
}
//! Return zero if indexing outside the vector \c v otherwise return the
//! element \c index
template<class T>
T index_zero_pad(const Vec<T> &v, const int index)
{
if (index >= 0 && index < v.size())
return v(index);
else
return T(0);
}
//! Transposition of the matrix \c m returning the transposed matrix in \c out
template<class T>
void transpose(const Mat<T> &m, Mat<T> &out) { out = m.T(); }
//! Transposition of the matrix \c m
template<class T>
Mat<T> transpose(const Mat<T> &m) { return m.T(); }
//! Hermitian transpose (complex conjugate transpose) of the matrix \c m
//! returning the transposed matrix in \c out
template<class T>
void hermitian_transpose(const Mat<T> &m, Mat<T> &out) { out = m.H(); }
//! Hermitian transpose (complex conjugate transpose) of the matrix \c m
template<class T>
Mat<T> hermitian_transpose(const Mat<T> &m) { return m.H(); }
/*!
* \brief Returns true if matrix \c X is hermitian, false otherwise
* \author M. Szalay
*
* A square matrix \f$\mathbf{X}\f$ is hermitian if
* \f[
* \mathbf{X} = \mathbf{X}^H
* \f]
*/
template<class Num_T>
bool is_hermitian(const Mat<Num_T>& X)
{
if (X == X.H())
return true;
else
return false;
}
/*!
* \brief Returns true if matrix \c X is unitary, false otherwise
* \author M. Szalay
*
* A square matrix \f$\mathbf{X}\f$ is unitary if
* \f[
* \mathbf{X}^H = \mathbf{X}^{-1}
* \f]
*/
template<class Num_T>
bool is_unitary(const Mat<Num_T>& X)
{
if (inv(X) == X.H())
return true;
else
return false;
}
/*!
* \relates Vec
* \brief Creates a vector with \c n copies of the vector \c v
* \author Martin Senst
*
* \param v Vector to be repeated
* \param n Number of times to repeat \c v
*/
template<class T>
Vec<T> repmat(const Vec<T> &v, int n)
{
it_assert(n > 0, "repmat(): Wrong repetition parameter");
int data_length = v.length();
it_assert(data_length > 0, "repmat(): Input vector can not be empty");
Vec<T> assembly(data_length * n);
for (int j = 0; j < n; ++j) {
assembly.set_subvector(j * data_length, v);
}
return assembly;
}
/*!
* \relates Mat
* \brief Creates a matrix with \c m by \c n copies of the matrix \c data
* \author Mark Dobossy
*
* \param data Matrix to be repeated
* \param m Number of times to repeat data vertically
* \param n Number of times to repeat data horizontally
*/
template<class T>
Mat<T> repmat(const Mat<T> &data, int m, int n)
{
it_assert((m > 0) && (n > 0), "repmat(): Wrong repetition parameters");
int data_rows = data.rows();
int data_cols = data.cols();
it_assert((data_rows > 0) && (data_cols > 0), "repmat(): Input matrix can "
"not be empty");
Mat<T> assembly(data_rows*m, data_cols*n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
assembly.set_submatrix(i*data_rows, j*data_cols, data);
}
}
return assembly;
}
/*!
* \relates Mat
* \brief Returns a matrix with \c m by \c n copies of the vector \c data
* \author Adam Piatyszek
*
* \param v Vector to be repeated
* \param m Number of times to repeat data vertically
* \param n Number of times to repeat data horizontally
* \param transpose Specifies the input vector orientation (column vector
* by default)
*/
template<class T> inline
Mat<T> repmat(const Vec<T> &v, int m, int n, bool transpose = false)
{
return repmat((transpose ? v.T() : Mat<T>(v)), m, n);
}
/*!
* \brief Computes the Kronecker product of two matrices
*
* <tt>K = kron(X, Y)</tt> returns the Kronecker tensor product of \c X
* and \c Y. The result is a large array formed by taking all possible
* products between the elements of \c X and those of \c Y. If \c X is
* <tt>(m x n)</tt> and \c Y is <tt>(p x q)</tt>, then <tt>kron(X, Y)</tt>
* is <tt>(m*p x n*q)</tt>.
*
* \author Adam Piatyszek
*/
template<class Num_T>
Mat<Num_T> kron(const Mat<Num_T>& X, const Mat<Num_T>& Y)
{
Mat<Num_T> result(X.rows() * Y.rows(), X.cols() * Y.cols());
for (int i = 0; i < X.rows(); i++)
for (int j = 0; j < X.cols(); j++)
result.set_submatrix(i * Y.rows(), j * Y.cols(), X(i, j) * Y);
return result;
}
/*!
* \brief Square root of the complex square matrix \c A
*
* This function computes the matrix square root of the complex square
* matrix \c A. The implementation is based on the Matlab/Octave \c
* sqrtm() function.
*
* Ref: N. J. Higham, "Numerical Analysis Report No. 336", Manchester
* Centre for Computational Mathematics, Manchester, England, January 1999
*
* \author Adam Piatyszek
*/
cmat sqrtm(const cmat& A);
/*!
* \brief Square root of the real square matrix \c A
*
* This function computes the matrix square root of the real square matrix
* \c A. Please note that the returned matrix is complex. The
* implementation is based on the Matlab/Octave \c sqrtm() function.
*
* Ref: N. J. Higham, "Numerical Analysis Report No. 336", Manchester
* Centre for Computational Mathematics, Manchester, England, January 1999
*
* \author Adam Piatyszek
*/
cmat sqrtm(const mat& A);
/*!
* \brief Calculate the rank of matrix \c m
* \author Martin Senst
*
* \param m Input matrix
* \param tol Tolerance used for comparing the singular values with zero.
* If negative, it is automatically determined.
*/
template<class T>
int rank(const Mat<T> &m, double tol = -1.0)
{
int rows = m.rows();
int cols = m.cols();
if ((rows == 0) || (cols == 0))
return 0;
vec sing_val = svd(m);
if (tol < 0.0) { // Calculate default tolerance
tol = eps * sing_val(0) * (rows > cols ? rows : cols);
}
// Count number of nonzero singular values
int r = 0;
while ((r < sing_val.length()) && (sing_val(r) > tol)) {
r++;
}
return r;
}
//! Specialisation of rank() function
template<> inline
int rank(const imat &m, double tol)
{
return rank(to_mat(m), tol);
}
//! Specialisation of rank() function
template<> inline
int rank(const smat &m, double tol)
{
return rank(to_mat(m), tol);
}
//! Specialisation of rank() function
template<> inline
int rank(const bmat &, double)
{
it_error("rank(bmat): Function not implemented for GF(2) algebra");
return 0;
}
//!@}
// -------------------- Diagonal matrix functions -------------------------
//! \addtogroup diag
//!@{
/*!
* \brief Create a diagonal matrix using vector \c v as its diagonal
*
* All other matrix elements except the ones on its diagonal are set to
* zero. An optional parameter \c K can be used to shift the diagonal in
* the resulting matrix. By default \c K is equal to zero.
*
* The size of the diagonal matrix will be \f$n+|K| \times n+|K|\f$, where
* \f$n\f$ is the length of the input vector \c v.
*/
template<class T>
Mat<T> diag(const Vec<T> &v, const int K = 0)
{
Mat<T> m(v.size() + std::abs(K), v.size() + std::abs(K));
m = T(0);
if (K > 0)
for (int i = v.size() - 1; i >= 0; i--)
m(i, i + K) = v(i);
else
for (int i = v.size() - 1; i >= 0; i--)
m(i - K, i) = v(i);
return m;
}
/*!
* \brief Create a diagonal matrix using vector \c v as its diagonal
*
* All other matrix elements except the ones on its diagonal are set to
* zero.
*
* The size of the diagonal matrix will be \f$n \times n\f$, where \f$n\f$
* is the length of the input vector \c v.
*/
template<class T>
void diag(const Vec<T> &v, Mat<T> &m)
{
m.set_size(v.size(), v.size(), false);
m = T(0);
for (int i = v.size() - 1; i >= 0; i--)
m(i, i) = v(i);
}
/*!
* \brief Get the diagonal elements of the input matrix \c m
*
* The size of the output vector with diagonal elements will be
* \f$n = min(r, c)\f$, where \f$r \times c\f$ are the dimensions of
* matrix \c m.
*/
template<class T>
Vec<T> diag(const Mat<T> &m)
{
Vec<T> t(std::min(m.rows(), m.cols()));
for (int i = 0; i < t.size(); i++)
t(i) = m(i, i);
return t;
}
/*!
\brief Returns a matrix with the elements of the input vector \c main on
the diagonal and the elements of the input vector \c sup on the diagonal
row above.
If the number of elements in the vector \c main is \f$n\f$, then the
number of elements in the input vector \c sup must be \f$n-1\f$. The
size of the return matrix will be \f$n \times n\f$.
*/
template<class T>
Mat<T> bidiag(const Vec<T> &main, const Vec<T> &sup)
{
it_assert(main.size() == sup.size() + 1, "bidiag()");
int n = main.size();
Mat<T> m(n, n);
m = T(0);
for (int i = 0; i < n - 1; i++) {
m(i, i) = main(i);
m(i, i + 1) = sup(i);
}
m(n - 1, n - 1) = main(n - 1);
return m;
}
/*!
\brief Returns in the output variable \c m a matrix with the elements of
the input vector \c main on the diagonal and the elements of the input
vector \c sup on the diagonal row above.
If the number of elements in the vector \c main is \f$n\f$, then the
number of elements in the input vector \c sup must be \f$n-1\f$. The
size of the output matrix \c m will be \f$n \times n\f$.
*/
template<class T>
void bidiag(const Vec<T> &main, const Vec<T> &sup, Mat<T> &m)
{
it_assert(main.size() == sup.size() + 1, "bidiag()");
int n = main.size();
m.set_size(n, n);
m = T(0);
for (int i = 0; i < n - 1; i++) {
m(i, i) = main(i);
m(i, i + 1) = sup(i);
}
m(n - 1, n - 1) = main(n - 1);
}
/*!
\brief Returns the main diagonal and the diagonal row above in the two
output vectors \c main and \c sup.
The input matrix \c in must be a square \f$n \times n\f$ matrix. The
length of the output vector \c main will be \f$n\f$ and the length of
the output vector \c sup will be \f$n-1\f$.
*/
template<class T>
void bidiag(const Mat<T> &m, Vec<T> &main, Vec<T> &sup)
{
it_assert(m.rows() == m.cols(), "bidiag(): Matrix must be square!");
int n = m.cols();
main.set_size(n);
sup.set_size(n - 1);
for (int i = 0; i < n - 1; i++) {
main(i) = m(i, i);
sup(i) = m(i, i + 1);
}
main(n - 1) = m(n - 1, n - 1);
}
/*!
\brief Returns a matrix with the elements of \c main on the diagonal,
the elements of \c sup on the diagonal row above, and the elements of \c
sub on the diagonal row below.
If the length of the input vector \c main is \f$n\f$ then the lengths of
the vectors \c sup and \c sub must equal \f$n-1\f$. The size of the
return matrix will be \f$n \times n\f$.
*/
template<class T>
Mat<T> tridiag(const Vec<T> &main, const Vec<T> &sup, const Vec<T> &sub)
{
it_assert(main.size() == sup.size() + 1 && main.size() == sub.size() + 1, "bidiag()");
int n = main.size();
Mat<T> m(n, n);
m = T(0);
for (int i = 0; i < n - 1; i++) {
m(i, i) = main(i);
m(i, i + 1) = sup(i);
m(i + 1, i) = sub(i);
}
m(n - 1, n - 1) = main(n - 1);
return m;
}
/*!
\brief Returns in the output matrix \c m a matrix with the elements of
\c main on the diagonal, the elements of \c sup on the diagonal row
above, and the elements of \c sub on the diagonal row below.
If the length of the input vector \c main is \f$n\f$ then the lengths of
the vectors \c sup and \c sub must equal \f$n-1\f$. The size of the
output matrix \c m will be \f$n \times n\f$.
*/
template<class T>
void tridiag(const Vec<T> &main, const Vec<T> &sup, const Vec<T> &sub, Mat<T> &m)
{
it_assert(main.size() == sup.size() + 1 && main.size() == sub.size() + 1, "bidiag()");
int n = main.size();
m.set_size(n, n);
m = T(0);
for (int i = 0; i < n - 1; i++) {
m(i, i) = main(i);
m(i, i + 1) = sup(i);
m(i + 1, i) = sub(i);
}
m(n - 1, n - 1) = main(n - 1);
}
/*!
\brief Returns the main diagonal, the diagonal row above, and the
diagonal row below int the output vectors \c main, \c sup, and \c sub.
The input matrix \c m must be a square \f$n \times n\f$ matrix. The
length of the output vector \c main will be \f$n\f$ and the length of
the output vectors \c sup and \c sup will be \f$n-1\f$.
*/
template<class T>
void tridiag(const Mat<T> &m, Vec<T> &main, Vec<T> &sup, Vec<T> &sub)
{
it_assert(m.rows() == m.cols(), "tridiag(): Matrix must be square!");
int n = m.cols();
main.set_size(n);
sup.set_size(n - 1);
sub.set_size(n - 1);
for (int i = 0; i < n - 1; i++) {
main(i) = m(i, i);
sup(i) = m(i, i + 1);
sub(i) = m(i + 1, i);
}
main(n - 1) = m(n - 1, n - 1);
}
/*!
\brief The trace of the matrix \c m, i.e. the sum of the diagonal elements.
*/
template<class T>
T trace(const Mat<T> &m)
{
return sum(diag(m));
}
//!@}
// ----------------- reshaping vectors and matrices ------------------------
//! \addtogroup reshaping
//!@{
//! Reverse the input vector
template<class T>
Vec<T> reverse(const Vec<T> &in)
{
int i, s = in.length();
Vec<T> out(s);
for (i = 0;i < s;i++)
out[i] = in[s-1-i];
return out;
}
//! Row vectorize the matrix [(0,0) (0,1) ... (N-1,N-2) (N-1,N-1)]
template<class T>
Vec<T> rvectorize(const Mat<T> &m)
{
int i, j, n = 0, r = m.rows(), c = m.cols();
Vec<T> v(r * c);
for (i = 0; i < r; i++)
for (j = 0; j < c; j++)
v(n++) = m(i, j);
return v;
}
//! Column vectorize the matrix [(0,0) (1,0) ... (N-2,N-1) (N-1,N-1)]
template<class T>
Vec<T> cvectorize(const Mat<T> &m)
{
int i, j, n = 0, r = m.rows(), c = m.cols();
Vec<T> v(r * c);
for (j = 0; j < c; j++)
for (i = 0; i < r; i++)
v(n++) = m(i, j);
return v;
}
/*!
\brief Reshape the matrix into an rows*cols matrix
The data is taken columnwise from the original matrix and written
columnwise into the new matrix.
*/
template<class T>
Mat<T> reshape(const Mat<T> &m, int rows, int cols)
{
it_assert_debug(m.rows()*m.cols() == rows*cols, "Mat<T>::reshape: Sizes must match");
Mat<T> temp(rows, cols);
int i, j, ii = 0, jj = 0;
for (j = 0; j < m.cols(); j++) {
for (i = 0; i < m.rows(); i++) {
temp(ii++, jj) = m(i, j);
if (ii == rows) {
jj++;
ii = 0;
}
}
}
return temp;
}
/*!
\brief Reshape the vector into an rows*cols matrix
The data is element by element from the vector and written columnwise
into the new matrix.
*/
template<class T>
Mat<T> reshape(const Vec<T> &v, int rows, int cols)
{
it_assert_debug(v.size() == rows*cols, "Mat<T>::reshape: Sizes must match");
Mat<T> temp(rows, cols);
int i, j, ii = 0;
for (j = 0; j < cols; j++) {
for (i = 0; i < rows; i++) {
temp(i, j) = v(ii++);
}
}
return temp;
}
//!@}
//! Returns \a true if all elements are ones and \a false otherwise
bool all(const bvec &testvec);
//! Returns \a true if any element is one and \a false otherwise
bool any(const bvec &testvec);
//! \cond
// ----------------------------------------------------------------------
// Instantiations
// ----------------------------------------------------------------------
#ifndef _MSC_VER
extern template int length(const vec &v);
extern template int length(const cvec &v);
extern template int length(const svec &v);
extern template int length(const ivec &v);
extern template int length(const bvec &v);
extern template double sum(const vec &v);
extern template std::complex<double> sum(const cvec &v);
extern template short sum(const svec &v);
extern template int sum(const ivec &v);
extern template bin sum(const bvec &v);
extern template double sum_sqr(const vec &v);
extern template std::complex<double> sum_sqr(const cvec &v);
extern template short sum_sqr(const svec &v);
extern template int sum_sqr(const ivec &v);
extern template bin sum_sqr(const bvec &v);
extern template vec cumsum(const vec &v);
extern template cvec cumsum(const cvec &v);
extern template svec cumsum(const svec &v);
extern template ivec cumsum(const ivec &v);
extern template bvec cumsum(const bvec &v);
extern template double prod(const vec &v);
extern template std::complex<double> prod(const cvec &v);
extern template short prod(const svec &v);
extern template int prod(const ivec &v);
extern template bin prod(const bvec &v);
extern template vec cross(const vec &v1, const vec &v2);
extern template cvec cross(const cvec &v1, const cvec &v2);
extern template ivec cross(const ivec &v1, const ivec &v2);
extern template svec cross(const svec &v1, const svec &v2);
extern template bvec cross(const bvec &v1, const bvec &v2);
extern template vec reverse(const vec &in);
extern template cvec reverse(const cvec &in);
extern template svec reverse(const svec &in);
extern template ivec reverse(const ivec &in);
extern template bvec reverse(const bvec &in);
extern template vec zero_pad(const vec &v, int n);
extern template cvec zero_pad(const cvec &v, int n);
extern template ivec zero_pad(const ivec &v, int n);
extern template svec zero_pad(const svec &v, int n);
extern template bvec zero_pad(const bvec &v, int n);
extern template vec zero_pad(const vec &v);
extern template cvec zero_pad(const cvec &v);
extern template ivec zero_pad(const ivec &v);
extern template svec zero_pad(const svec &v);
extern template bvec zero_pad(const bvec &v);
extern template mat zero_pad(const mat &, int, int);
extern template cmat zero_pad(const cmat &, int, int);
extern template imat zero_pad(const imat &, int, int);
extern template smat zero_pad(const smat &, int, int);
extern template bmat zero_pad(const bmat &, int, int);
extern template vec sum(const mat &m, int dim);
extern template cvec sum(const cmat &m, int dim);
extern template svec sum(const smat &m, int dim);
extern template ivec sum(const imat &m, int dim);
extern template bvec sum(const bmat &m, int dim);
extern template double sumsum(const mat &X);
extern template std::complex<double> sumsum(const cmat &X);
extern template short sumsum(const smat &X);
extern template int sumsum(const imat &X);
extern template bin sumsum(const bmat &X);
extern template vec sum_sqr(const mat & m, int dim);
extern template cvec sum_sqr(const cmat &m, int dim);
extern template svec sum_sqr(const smat &m, int dim);
extern template ivec sum_sqr(const imat &m, int dim);
extern template bvec sum_sqr(const bmat &m, int dim);
extern template mat cumsum(const mat &m, int dim);
extern template cmat cumsum(const cmat &m, int dim);
extern template smat cumsum(const smat &m, int dim);
extern template imat cumsum(const imat &m, int dim);
extern template bmat cumsum(const bmat &m, int dim);
extern template vec prod(const mat &m, int dim);
extern template cvec prod(const cmat &v, int dim);
extern template svec prod(const smat &m, int dim);
extern template ivec prod(const imat &m, int dim);
extern template bvec prod(const bmat &m, int dim);
extern template vec diag(const mat &in);
extern template cvec diag(const cmat &in);
extern template void diag(const vec &in, mat &m);
extern template void diag(const cvec &in, cmat &m);
extern template mat diag(const vec &v, const int K);
extern template cmat diag(const cvec &v, const int K);
extern template mat bidiag(const vec &, const vec &);
extern template cmat bidiag(const cvec &, const cvec &);
extern template void bidiag(const vec &, const vec &, mat &);
extern template void bidiag(const cvec &, const cvec &, cmat &);
extern template void bidiag(const mat &, vec &, vec &);
extern template void bidiag(const cmat &, cvec &, cvec &);
extern template mat tridiag(const vec &main, const vec &, const vec &);
extern template cmat tridiag(const cvec &main, const cvec &, const cvec &);
extern template void tridiag(const vec &main, const vec &, const vec &, mat &);
extern template void tridiag(const cvec &main, const cvec &, const cvec &, cmat &);
extern template void tridiag(const mat &m, vec &, vec &, vec &);
extern template void tridiag(const cmat &m, cvec &, cvec &, cvec &);
extern template double trace(const mat &in);
extern template std::complex<double> trace(const cmat &in);
extern template short trace(const smat &in);
extern template int trace(const imat &in);
extern template bin trace(const bmat &in);
extern template void transpose(const mat &m, mat &out);
extern template void transpose(const cmat &m, cmat &out);
extern template void transpose(const smat &m, smat &out);
extern template void transpose(const imat &m, imat &out);
extern template void transpose(const bmat &m, bmat &out);
extern template mat transpose(const mat &m);
extern template cmat transpose(const cmat &m);
extern template smat transpose(const smat &m);
extern template imat transpose(const imat &m);
extern template bmat transpose(const bmat &m);
extern template void hermitian_transpose(const mat &m, mat &out);
extern template void hermitian_transpose(const cmat &m, cmat &out);
extern template void hermitian_transpose(const smat &m, smat &out);
extern template void hermitian_transpose(const imat &m, imat &out);
extern template void hermitian_transpose(const bmat &m, bmat &out);
extern template mat hermitian_transpose(const mat &m);
extern template cmat hermitian_transpose(const cmat &m);
extern template smat hermitian_transpose(const smat &m);
extern template imat hermitian_transpose(const imat &m);
extern template bmat hermitian_transpose(const bmat &m);
extern template bool is_hermitian(const mat &X);
extern template bool is_hermitian(const cmat &X);
extern template bool is_unitary(const mat &X);
extern template bool is_unitary(const cmat &X);
extern template vec rvectorize(const mat &m);
extern template cvec rvectorize(const cmat &m);
extern template ivec rvectorize(const imat &m);
extern template svec rvectorize(const smat &m);
extern template bvec rvectorize(const bmat &m);
extern template vec cvectorize(const mat &m);
extern template cvec cvectorize(const cmat &m);
extern template ivec cvectorize(const imat &m);
extern template svec cvectorize(const smat &m);
extern template bvec cvectorize(const bmat &m);
extern template mat reshape(const mat &m, int rows, int cols);
extern template cmat reshape(const cmat &m, int rows, int cols);
extern template imat reshape(const imat &m, int rows, int cols);
extern template smat reshape(const smat &m, int rows, int cols);
extern template bmat reshape(const bmat &m, int rows, int cols);
extern template mat reshape(const vec &m, int rows, int cols);
extern template cmat reshape(const cvec &m, int rows, int cols);
extern template imat reshape(const ivec &m, int rows, int cols);
extern template smat reshape(const svec &m, int rows, int cols);
extern template bmat reshape(const bvec &m, int rows, int cols);
extern template mat kron(const mat &X, const mat &Y);
extern template cmat kron(const cmat &X, const cmat &Y);
extern template imat kron(const imat &X, const imat &Y);
extern template smat kron(const smat &X, const smat &Y);
extern template bmat kron(const bmat &X, const bmat &Y);
extern template vec repmat(const vec &v, int n);
extern template cvec repmat(const cvec &v, int n);
extern template ivec repmat(const ivec &v, int n);
extern template svec repmat(const svec &v, int n);
extern template bvec repmat(const bvec &v, int n);
extern template mat repmat(const vec &v, int m, int n, bool transpose);
extern template cmat repmat(const cvec &v, int m, int n, bool transpose);
extern template imat repmat(const ivec &v, int m, int n, bool transpose);
extern template smat repmat(const svec &v, int m, int n, bool transpose);
extern template bmat repmat(const bvec &v, int m, int n, bool transpose);
extern template mat repmat(const mat &data, int m, int n);
extern template cmat repmat(const cmat &data, int m, int n);
extern template imat repmat(const imat &data, int m, int n);
extern template smat repmat(const smat &data, int m, int n);
extern template bmat repmat(const bmat &data, int m, int n);
#endif // _MSC_VER
//! \endcond
} // namespace itpp
#endif // #ifndef MATFUNC_H
|