This file is indexed.

/usr/include/itpp/base/random_dsfmt.h is in libitpp-dev 4.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*!
 * \file
 * \brief C++ implementation of dSFMT random number generator
 * \author Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef RANDOM_DSFMT_H
#define RANDOM_DSFMT_H

#include <itpp/base/ittypes.h>
#include <itpp/base/vec.h>
#include <cstring> // required for memset()
#include <ctime>
#include <limits>

#if defined(__SSE2__)
#  include <emmintrin.h>
#endif

namespace itpp
{

/*!
 * \brief C++ implementation of dSFMT random number generator
 * \ingroup randgen
 *
 * The DSFMT class implements parts of the Double precision SIMD-oriented
 * Fast Mersenne Twister (dSFM) random number generator. DSFMT directly
 * generates double precision floating point random numbers, which have the
 * IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std
 * 754-1985) format. DSFMT does not support integer outputs.
 *
 * Visit http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html for
 * more details on the original dSFMT implementation.
 *
 * Here is a copy of the LICENSE.txt file from the dSFMT-src-2.0.tar.gz
 * package, on which C++ DSFMT implementation is based:
 * \verbatim
 * Copyright (c) 2007, 2008 Mutsuo Saito, Makoto Matsumoto and Hiroshima
 * University.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 *     * Neither the name of the Hiroshima University nor the names of
 *       its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written
 *       permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * \endverbatim
 */
template <int MEXP, int POS1, int SL1, uint64_t MSK1, uint64_t MSK2,
          uint32_t MSK32_1, uint32_t MSK32_2,
          uint32_t MSK32_3, uint32_t MSK32_4,
          uint64_t FIX1, uint64_t FIX2, uint64_t PCV1, uint64_t PCV2>
class DSFMT {
public:
  //! Default constructor
  DSFMT() { if (!initialized) init_gen_rand(4257U); }
  //! Constructor using a certain seed
  DSFMT(unsigned int seed) { init_gen_rand(seed); }

  //! Set the seed to a semi-random value (based on hashed time and clock)
  void randomize() { init_gen_rand(hash(time(0), clock())); }
  //! Reset the generator with the same seed as used last time
  void reset() { init_gen_rand(last_seed); }
  //! Initialise the generator with a new seed (\sa init_gen_rand())
  void reset(unsigned int seed) { init_gen_rand(seed); }

  //! Return a uniformly distributed (0,1) value.
  double random_01() { return genrand_open_open(); }
  //! Return a uniformly distributed [0,1) value.
  double random_01_lclosed() { return genrand_close_open(); }
  //! Return a uniformly distributed (0,1] value.
  double random_01_rclosed() { return genrand_open_close(); }
  //! Return a uniformly distributed [0, UINT_MAX) value.
  uint32_t random_int() { return genrand_uint32(); }

  //! Return current state of generator in the form of ivec
  ivec get_state() const {
    int size = (N + 1) * 4;
    uint32_t *psfmt = &status[0].u32[0];
    ivec state(size + 1); // size + 1 to save idx variable in the same vec
    for (int i = 0; i < size; ++i) {
      state(i) = psfmt[i];
    }
    state(size) = idx;
    return state;
  }

  //! Resume the state of the generator from a previously saved ivec
  void set_state(const ivec &state) {
    int size = (N + 1) * 4;
    it_assert(state.size() == size + 1, "Random_Generator::set_state(): "
              "Invalid state initialization vector");
    uint32_t *psfmt = &status[0].u32[0];
    for (int i = 0; i < size; ++i) {
      psfmt[i] = state(i);
    }
    idx = state(size);
  }

  /*!
   * \brief Initialise the generator with a new seed.
   *
   * This function initializes the internal state array with a 32-bit
   * integer seed.
   * \param seed a 32-bit integer used as the seed.
   */
  void init_gen_rand(unsigned int seed) {
    uint32_t *psfmt = &status[0].u32[0];
    psfmt[idxof(0)] = seed;
    for (int i = 1; i < (N + 1) * 4; i++) {
      psfmt[idxof(i)] = 1812433253UL
        * (psfmt[idxof(i - 1)] ^ (psfmt[idxof(i - 1)] >> 30)) + i;
    }
    initial_mask();
    period_certification();
    idx = Nx2;
#if defined(__SSE2__)
    sse2_param_mask = _mm_set_epi32(MSK32_3, MSK32_4, MSK32_1, MSK32_2);
#endif
    initialized = true;
    last_seed = seed;
  }

  //! Generate uniform [0, UINT_MAX) integer pseudorandom number.
  static uint32_t genrand_uint32() {
    uint64_t *psfmt64 = &status[0].u[0];
    if (idx >= Nx2) {
      dsfmt_gen_rand_all();
      idx = 0;
    }
    return psfmt64[idx++] & 0xffffffffU;
  }

  /*!
   * \brief Generate uniform [1, 2) double pseudorandom number.
   *
   * This function generates and returns double precision pseudorandom
   * number which distributes uniformly in the range [1, 2).  This is
   * the primitive and faster than generating numbers in other ranges.
   * \c init_gen_rand() must be called before this function.
   * \return double precision floating point pseudorandom number
   */
  static double genrand_close1_open2() {
    double *psfmt64 = &status[0].d[0];
    if (idx >= Nx2) {
      dsfmt_gen_rand_all();
      idx = 0;
    }
    return psfmt64[idx++];
  }

  /*!
   * \brief Generate uniform [0, 1) double pseudorandom number.
   *
   * This function generates and returns double precision pseudorandom
   * number which distributes uniformly in the range [0, 1).
   * \c init_gen_rand() must be called before this function.
   * \return double precision floating point pseudorandom number
   */
  static double genrand_close_open() { return genrand_close1_open2() - 1.0; }

  /*!
   * \brief Generate uniform (0, 1] double pseudorandom number.
   *
   * This function generates and returns double precision pseudorandom
   * number which distributes uniformly in the range (0, 1].
   * \c init_gen_rand() must be called before this function.
   * \return double precision floating point pseudorandom number
   */
  static double genrand_open_close() { return 2.0 - genrand_close1_open2(); }

  /*!
   * \brief Generate uniform (0, 1) double pseudorandom number.
   *
   * This function generates and returns double precision pseudorandom
   * number which distributes uniformly in the range (0, 1).
   * \c init_gen_rand() must be called before this function.
   * \return double precision floating point pseudorandom number
   */
  static double genrand_open_open() {
    double *dsfmt64 = &status[0].d[0];
    union {
      double d;
      uint64_t u;
    } r;

    if (idx >= Nx2) {
      dsfmt_gen_rand_all();
      idx = 0;
    }
    r.d = dsfmt64[idx++];
    r.u |= 1;
    return r.d - 1.0;
  }


private:
  static const int N = (MEXP - 128) / 104 + 1;
  static const int Nx2 = N * 2;
  static const uint64_t LOW_MASK = 0x000fffffffffffffULL;
  static const uint64_t HIGH_CONST = 0x3ff0000000000000ULL;
  static const unsigned int SR = 12U;
#if defined(__SSE2__)
  static const unsigned int SSE2_SHUFF = 0x1bU;
#endif // __SSE2__

  //! 128-bit data structure
  union W128_T {
#if defined(__SSE2__)
    __m128i si;
    __m128d sd;
#endif // __SSE2__
    uint64_t u[2];
    uint32_t u32[4];
    double d[2];
  };
  //! 128-bit data type
  typedef union W128_T w128_t;
  //! 128-bit internal state array
  static w128_t status[N + 1];
  //! State array indexing
  static int idx;
  //! Seed used for initialization
  static unsigned int last_seed;

  //! Initialization flag
  static bool initialized;
  //! Endianness flag
  static bool bigendian;

#if defined(__SSE2__)
  //! Mask data for sse2
  static __m128i sse2_param_mask;
#endif // __SSE2__

  /*!
   * \brief Get an unsigned int from time variables t and c.
   *
   * Better than uint(x) in case x is floating point in [0,1]
   * Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
   */
  static unsigned int hash(time_t t, clock_t c)
  {
    static unsigned int differ = 0; // guarantee time-based seeds will change

    unsigned int h1 = 0;
    unsigned char *p = (unsigned char *) &t;
    for (size_t i = 0; i < sizeof(t); ++i) {
      h1 *= std::numeric_limits<unsigned char>::max() + 2U;
      h1 += p[i];
    }
    unsigned int h2 = 0;
    p = (unsigned char *) &c;
    for (size_t j = 0; j < sizeof(c); ++j) {
      h2 *= std::numeric_limits<unsigned char>::max() + 2U;
      h2 += p[j];
    }
    return (h1 + differ++) ^ h2;
  }

  /*!
   * This function simulate a 32-bit array index overlapped to 64-bit
   * array of LITTLE ENDIAN in BIG ENDIAN machine.
   */
  static int idxof(int i) { return (bigendian ? (i ^ 1) : i); }

  /*!
   * This function initializes the internal state array to fit the IEEE
   * 754 format.
   */
  static void initial_mask() {
    uint64_t *psfmt = &status[0].u[0];
    for (int i = 0; i < Nx2; i++) {
      psfmt[i] = (psfmt[i] & LOW_MASK) | HIGH_CONST;
    }
  }

  //! This function certificate the period of 2^{MEXP}-1.
  static void period_certification() {
    uint64_t pcv[2] = {PCV1, PCV2};
    uint64_t tmp[2];
    uint64_t inner;

    tmp[0] = (status[N].u[0] ^ FIX1);
    tmp[1] = (status[N].u[1] ^ FIX2);

    inner = tmp[0] & pcv[0];
    inner ^= tmp[1] & pcv[1];
    for (int i = 32; i > 0; i >>= 1) {
      inner ^= inner >> i;
    }
    inner &= 1;
    /* check OK */
    if (inner == 1) {
      return;
    }
    /* check NG, and modification */
#if (PCV2 & 1) == 1
    status[N].u[1] ^= 1;
#else
    uint64_t work;
    for (int i = 1; i >= 0; i--) {
      work = 1;
      for (int j = 0; j < 64; j++) {
        if ((work & pcv[i]) != 0) {
          status[N].u[i] ^= work;
          return;
        }
        work = work << 1;
      }
    }
#endif // (PCV2 & 1) == 1
    return;
  }

  /*!
   * This function represents the recursion formula.
   * \param r output 128-bit
   * \param a a 128-bit part of the internal state array
   * \param b a 128-bit part of the internal state array
   * \param lung a 128-bit part of the internal state array (I/O)
   */
  static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *lung) {
#if defined(__SSE2__)
    __m128i x = a->si;
    __m128i z = _mm_slli_epi64(x, SL1);
    __m128i y = _mm_shuffle_epi32(lung->si, SSE2_SHUFF);
    z = _mm_xor_si128(z, b->si);
    y = _mm_xor_si128(y, z);

    __m128i v = _mm_srli_epi64(y, SR);
    __m128i w = _mm_and_si128(y, sse2_param_mask);
    v = _mm_xor_si128(v, x);
    v = _mm_xor_si128(v, w);
    r->si = v;
    lung->si = y;
#else // standard C++
    uint64_t t0 = a->u[0];
    uint64_t t1 = a->u[1];
    uint64_t L0 = lung->u[0];
    uint64_t L1 = lung->u[1];
    lung->u[0] = (t0 << SL1) ^ (L1 >> 32) ^ (L1 << 32) ^ b->u[0];
    lung->u[1] = (t1 << SL1) ^ (L0 >> 32) ^ (L0 << 32) ^ b->u[1];
    r->u[0] = (lung->u[0] >> SR) ^ (lung->u[0] & MSK1) ^ t0;
    r->u[1] = (lung->u[1] >> SR) ^ (lung->u[1] & MSK2) ^ t1;
#endif // __SSE2__
  }

  /*!
   * This function fills the internal state array with double precision
   * floating point pseudorandom numbers of the IEEE 754 format.
   */
  static void dsfmt_gen_rand_all() {
    int i;
    w128_t lung = status[N];
    do_recursion(&status[0], &status[0], &status[POS1], &lung);
    for (i = 1; i < N - POS1; i++) {
      do_recursion(&status[i], &status[i], &status[i + POS1], &lung);
    }
    for (; i < N; i++) {
      do_recursion(&status[i], &status[i], &status[i + POS1 - N], &lung);
    }
    status[N] = lung;
  }

};


// ----------------------------------------------------------------------
// typedefs of different RNG
// ----------------------------------------------------------------------

typedef DSFMT<521, 3, 25,
              0x000fbfefff77efffULL, 0x000ffeebfbdfbfdfULL,
              0x000fbfefU, 0xff77efffU, 0x000ffeebU, 0xfbdfbfdfU,
              0xcfb393d661638469ULL, 0xc166867883ae2adbULL,
              0xccaa588000000000ULL, 0x0000000000000001ULL> DSFMT_521_RNG;

typedef DSFMT<1279, 9, 19,
              0x000efff7ffddffeeULL, 0x000fbffffff77fffULL,
              0x000efff7U, 0xffddffeeU, 0x000fbfffU, 0xfff77fffU,
              0xb66627623d1a31beULL, 0x04b6c51147b6109bULL,
              0x7049f2da382a6aebULL, 0xde4ca84a40000001ULL> DSFMT_1279_RNG;

typedef DSFMT<2203, 7, 19,
              0x000fdffff5edbfffULL, 0x000f77fffffffbfeULL,
              0x000fdfffU, 0xf5edbfffU, 0x000f77ffU, 0xfffffbfeU,
              0xb14e907a39338485ULL, 0xf98f0735c637ef90ULL,
              0x8000000000000000ULL, 0x0000000000000001ULL> DSFMT_2203_RNG;

typedef DSFMT<4253, 19, 19,
              0x0007b7fffef5feffULL, 0x000ffdffeffefbfcULL,
              0x0007b7ffU, 0xfef5feffU, 0x000ffdffU, 0xeffefbfcU,
              0x80901b5fd7a11c65ULL, 0x5a63ff0e7cb0ba74ULL,
              0x1ad277be12000000ULL, 0x0000000000000001ULL> DSFMT_4253_RNG;

typedef DSFMT<11213, 37, 19,
              0x000ffffffdf7fffdULL, 0x000ffffffdf7fffdULL,
              0x000fffffU, 0xfdf7fffdU, 0x000dffffU, 0xfff6bfffU,
              0xd0ef7b7c75b06793ULL, 0x9c50ff4caae0a641ULL,
              0x8234c51207c80000ULL, 0x0000000000000001ULL> DSFMT_11213_RNG;

typedef DSFMT<19937, 117, 19,
              0x000ffafffffffb3fULL, 0x000ffdfffc90fffdULL,
              0x000ffaffU, 0xfffffb3fU, 0x000ffdffU, 0xfc90fffdU,
              0x90014964b32f4329ULL, 0x3b8d12ac548a7c7aULL,
              0x3d84e1ac0dc82880ULL, 0x0000000000000001ULL> DSFMT_19937_RNG;


} // namespace itpp

#endif // #ifndef RANDOM_DSFMT_H