/usr/include/itpp/base/random_dsfmt.h is in libitpp-dev 4.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | /*!
* \file
* \brief C++ implementation of dSFMT random number generator
* \author Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef RANDOM_DSFMT_H
#define RANDOM_DSFMT_H
#include <itpp/base/ittypes.h>
#include <itpp/base/vec.h>
#include <cstring> // required for memset()
#include <ctime>
#include <limits>
#if defined(__SSE2__)
# include <emmintrin.h>
#endif
namespace itpp
{
/*!
* \brief C++ implementation of dSFMT random number generator
* \ingroup randgen
*
* The DSFMT class implements parts of the Double precision SIMD-oriented
* Fast Mersenne Twister (dSFM) random number generator. DSFMT directly
* generates double precision floating point random numbers, which have the
* IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std
* 754-1985) format. DSFMT does not support integer outputs.
*
* Visit http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html for
* more details on the original dSFMT implementation.
*
* Here is a copy of the LICENSE.txt file from the dSFMT-src-2.0.tar.gz
* package, on which C++ DSFMT implementation is based:
* \verbatim
* Copyright (c) 2007, 2008 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* \endverbatim
*/
template <int MEXP, int POS1, int SL1, uint64_t MSK1, uint64_t MSK2,
uint32_t MSK32_1, uint32_t MSK32_2,
uint32_t MSK32_3, uint32_t MSK32_4,
uint64_t FIX1, uint64_t FIX2, uint64_t PCV1, uint64_t PCV2>
class DSFMT {
public:
//! Default constructor
DSFMT() { if (!initialized) init_gen_rand(4257U); }
//! Constructor using a certain seed
DSFMT(unsigned int seed) { init_gen_rand(seed); }
//! Set the seed to a semi-random value (based on hashed time and clock)
void randomize() { init_gen_rand(hash(time(0), clock())); }
//! Reset the generator with the same seed as used last time
void reset() { init_gen_rand(last_seed); }
//! Initialise the generator with a new seed (\sa init_gen_rand())
void reset(unsigned int seed) { init_gen_rand(seed); }
//! Return a uniformly distributed (0,1) value.
double random_01() { return genrand_open_open(); }
//! Return a uniformly distributed [0,1) value.
double random_01_lclosed() { return genrand_close_open(); }
//! Return a uniformly distributed (0,1] value.
double random_01_rclosed() { return genrand_open_close(); }
//! Return a uniformly distributed [0, UINT_MAX) value.
uint32_t random_int() { return genrand_uint32(); }
//! Return current state of generator in the form of ivec
ivec get_state() const {
int size = (N + 1) * 4;
uint32_t *psfmt = &status[0].u32[0];
ivec state(size + 1); // size + 1 to save idx variable in the same vec
for (int i = 0; i < size; ++i) {
state(i) = psfmt[i];
}
state(size) = idx;
return state;
}
//! Resume the state of the generator from a previously saved ivec
void set_state(const ivec &state) {
int size = (N + 1) * 4;
it_assert(state.size() == size + 1, "Random_Generator::set_state(): "
"Invalid state initialization vector");
uint32_t *psfmt = &status[0].u32[0];
for (int i = 0; i < size; ++i) {
psfmt[i] = state(i);
}
idx = state(size);
}
/*!
* \brief Initialise the generator with a new seed.
*
* This function initializes the internal state array with a 32-bit
* integer seed.
* \param seed a 32-bit integer used as the seed.
*/
void init_gen_rand(unsigned int seed) {
uint32_t *psfmt = &status[0].u32[0];
psfmt[idxof(0)] = seed;
for (int i = 1; i < (N + 1) * 4; i++) {
psfmt[idxof(i)] = 1812433253UL
* (psfmt[idxof(i - 1)] ^ (psfmt[idxof(i - 1)] >> 30)) + i;
}
initial_mask();
period_certification();
idx = Nx2;
#if defined(__SSE2__)
sse2_param_mask = _mm_set_epi32(MSK32_3, MSK32_4, MSK32_1, MSK32_2);
#endif
initialized = true;
last_seed = seed;
}
//! Generate uniform [0, UINT_MAX) integer pseudorandom number.
static uint32_t genrand_uint32() {
uint64_t *psfmt64 = &status[0].u[0];
if (idx >= Nx2) {
dsfmt_gen_rand_all();
idx = 0;
}
return psfmt64[idx++] & 0xffffffffU;
}
/*!
* \brief Generate uniform [1, 2) double pseudorandom number.
*
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range [1, 2). This is
* the primitive and faster than generating numbers in other ranges.
* \c init_gen_rand() must be called before this function.
* \return double precision floating point pseudorandom number
*/
static double genrand_close1_open2() {
double *psfmt64 = &status[0].d[0];
if (idx >= Nx2) {
dsfmt_gen_rand_all();
idx = 0;
}
return psfmt64[idx++];
}
/*!
* \brief Generate uniform [0, 1) double pseudorandom number.
*
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range [0, 1).
* \c init_gen_rand() must be called before this function.
* \return double precision floating point pseudorandom number
*/
static double genrand_close_open() { return genrand_close1_open2() - 1.0; }
/*!
* \brief Generate uniform (0, 1] double pseudorandom number.
*
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range (0, 1].
* \c init_gen_rand() must be called before this function.
* \return double precision floating point pseudorandom number
*/
static double genrand_open_close() { return 2.0 - genrand_close1_open2(); }
/*!
* \brief Generate uniform (0, 1) double pseudorandom number.
*
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range (0, 1).
* \c init_gen_rand() must be called before this function.
* \return double precision floating point pseudorandom number
*/
static double genrand_open_open() {
double *dsfmt64 = &status[0].d[0];
union {
double d;
uint64_t u;
} r;
if (idx >= Nx2) {
dsfmt_gen_rand_all();
idx = 0;
}
r.d = dsfmt64[idx++];
r.u |= 1;
return r.d - 1.0;
}
private:
static const int N = (MEXP - 128) / 104 + 1;
static const int Nx2 = N * 2;
static const uint64_t LOW_MASK = 0x000fffffffffffffULL;
static const uint64_t HIGH_CONST = 0x3ff0000000000000ULL;
static const unsigned int SR = 12U;
#if defined(__SSE2__)
static const unsigned int SSE2_SHUFF = 0x1bU;
#endif // __SSE2__
//! 128-bit data structure
union W128_T {
#if defined(__SSE2__)
__m128i si;
__m128d sd;
#endif // __SSE2__
uint64_t u[2];
uint32_t u32[4];
double d[2];
};
//! 128-bit data type
typedef union W128_T w128_t;
//! 128-bit internal state array
static w128_t status[N + 1];
//! State array indexing
static int idx;
//! Seed used for initialization
static unsigned int last_seed;
//! Initialization flag
static bool initialized;
//! Endianness flag
static bool bigendian;
#if defined(__SSE2__)
//! Mask data for sse2
static __m128i sse2_param_mask;
#endif // __SSE2__
/*!
* \brief Get an unsigned int from time variables t and c.
*
* Better than uint(x) in case x is floating point in [0,1]
* Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
*/
static unsigned int hash(time_t t, clock_t c)
{
static unsigned int differ = 0; // guarantee time-based seeds will change
unsigned int h1 = 0;
unsigned char *p = (unsigned char *) &t;
for (size_t i = 0; i < sizeof(t); ++i) {
h1 *= std::numeric_limits<unsigned char>::max() + 2U;
h1 += p[i];
}
unsigned int h2 = 0;
p = (unsigned char *) &c;
for (size_t j = 0; j < sizeof(c); ++j) {
h2 *= std::numeric_limits<unsigned char>::max() + 2U;
h2 += p[j];
}
return (h1 + differ++) ^ h2;
}
/*!
* This function simulate a 32-bit array index overlapped to 64-bit
* array of LITTLE ENDIAN in BIG ENDIAN machine.
*/
static int idxof(int i) { return (bigendian ? (i ^ 1) : i); }
/*!
* This function initializes the internal state array to fit the IEEE
* 754 format.
*/
static void initial_mask() {
uint64_t *psfmt = &status[0].u[0];
for (int i = 0; i < Nx2; i++) {
psfmt[i] = (psfmt[i] & LOW_MASK) | HIGH_CONST;
}
}
//! This function certificate the period of 2^{MEXP}-1.
static void period_certification() {
uint64_t pcv[2] = {PCV1, PCV2};
uint64_t tmp[2];
uint64_t inner;
tmp[0] = (status[N].u[0] ^ FIX1);
tmp[1] = (status[N].u[1] ^ FIX2);
inner = tmp[0] & pcv[0];
inner ^= tmp[1] & pcv[1];
for (int i = 32; i > 0; i >>= 1) {
inner ^= inner >> i;
}
inner &= 1;
/* check OK */
if (inner == 1) {
return;
}
/* check NG, and modification */
#if (PCV2 & 1) == 1
status[N].u[1] ^= 1;
#else
uint64_t work;
for (int i = 1; i >= 0; i--) {
work = 1;
for (int j = 0; j < 64; j++) {
if ((work & pcv[i]) != 0) {
status[N].u[i] ^= work;
return;
}
work = work << 1;
}
}
#endif // (PCV2 & 1) == 1
return;
}
/*!
* This function represents the recursion formula.
* \param r output 128-bit
* \param a a 128-bit part of the internal state array
* \param b a 128-bit part of the internal state array
* \param lung a 128-bit part of the internal state array (I/O)
*/
static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *lung) {
#if defined(__SSE2__)
__m128i x = a->si;
__m128i z = _mm_slli_epi64(x, SL1);
__m128i y = _mm_shuffle_epi32(lung->si, SSE2_SHUFF);
z = _mm_xor_si128(z, b->si);
y = _mm_xor_si128(y, z);
__m128i v = _mm_srli_epi64(y, SR);
__m128i w = _mm_and_si128(y, sse2_param_mask);
v = _mm_xor_si128(v, x);
v = _mm_xor_si128(v, w);
r->si = v;
lung->si = y;
#else // standard C++
uint64_t t0 = a->u[0];
uint64_t t1 = a->u[1];
uint64_t L0 = lung->u[0];
uint64_t L1 = lung->u[1];
lung->u[0] = (t0 << SL1) ^ (L1 >> 32) ^ (L1 << 32) ^ b->u[0];
lung->u[1] = (t1 << SL1) ^ (L0 >> 32) ^ (L0 << 32) ^ b->u[1];
r->u[0] = (lung->u[0] >> SR) ^ (lung->u[0] & MSK1) ^ t0;
r->u[1] = (lung->u[1] >> SR) ^ (lung->u[1] & MSK2) ^ t1;
#endif // __SSE2__
}
/*!
* This function fills the internal state array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
*/
static void dsfmt_gen_rand_all() {
int i;
w128_t lung = status[N];
do_recursion(&status[0], &status[0], &status[POS1], &lung);
for (i = 1; i < N - POS1; i++) {
do_recursion(&status[i], &status[i], &status[i + POS1], &lung);
}
for (; i < N; i++) {
do_recursion(&status[i], &status[i], &status[i + POS1 - N], &lung);
}
status[N] = lung;
}
};
// ----------------------------------------------------------------------
// typedefs of different RNG
// ----------------------------------------------------------------------
typedef DSFMT<521, 3, 25,
0x000fbfefff77efffULL, 0x000ffeebfbdfbfdfULL,
0x000fbfefU, 0xff77efffU, 0x000ffeebU, 0xfbdfbfdfU,
0xcfb393d661638469ULL, 0xc166867883ae2adbULL,
0xccaa588000000000ULL, 0x0000000000000001ULL> DSFMT_521_RNG;
typedef DSFMT<1279, 9, 19,
0x000efff7ffddffeeULL, 0x000fbffffff77fffULL,
0x000efff7U, 0xffddffeeU, 0x000fbfffU, 0xfff77fffU,
0xb66627623d1a31beULL, 0x04b6c51147b6109bULL,
0x7049f2da382a6aebULL, 0xde4ca84a40000001ULL> DSFMT_1279_RNG;
typedef DSFMT<2203, 7, 19,
0x000fdffff5edbfffULL, 0x000f77fffffffbfeULL,
0x000fdfffU, 0xf5edbfffU, 0x000f77ffU, 0xfffffbfeU,
0xb14e907a39338485ULL, 0xf98f0735c637ef90ULL,
0x8000000000000000ULL, 0x0000000000000001ULL> DSFMT_2203_RNG;
typedef DSFMT<4253, 19, 19,
0x0007b7fffef5feffULL, 0x000ffdffeffefbfcULL,
0x0007b7ffU, 0xfef5feffU, 0x000ffdffU, 0xeffefbfcU,
0x80901b5fd7a11c65ULL, 0x5a63ff0e7cb0ba74ULL,
0x1ad277be12000000ULL, 0x0000000000000001ULL> DSFMT_4253_RNG;
typedef DSFMT<11213, 37, 19,
0x000ffffffdf7fffdULL, 0x000ffffffdf7fffdULL,
0x000fffffU, 0xfdf7fffdU, 0x000dffffU, 0xfff6bfffU,
0xd0ef7b7c75b06793ULL, 0x9c50ff4caae0a641ULL,
0x8234c51207c80000ULL, 0x0000000000000001ULL> DSFMT_11213_RNG;
typedef DSFMT<19937, 117, 19,
0x000ffafffffffb3fULL, 0x000ffdfffc90fffdULL,
0x000ffaffU, 0xfffffb3fU, 0x000ffdffU, 0xfc90fffdU,
0x90014964b32f4329ULL, 0x3b8d12ac548a7c7aULL,
0x3d84e1ac0dc82880ULL, 0x0000000000000001ULL> DSFMT_19937_RNG;
} // namespace itpp
#endif // #ifndef RANDOM_DSFMT_H
|