This file is indexed.

/usr/include/itpp/signal/poly.h is in libitpp-dev 4.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*!
 * \file
 * \brief Polynomial functions
 * \author Tony Ottosson, Kumar Appaiah and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef POLY_H
#define POLY_H

#include <itpp/base/vec.h>


namespace itpp
{

/*!
  \brief Create a polynomial of the given roots
  \ingroup poly

  Create a polynomial \c p with roots \c r

  @{
*/
void poly(const vec &r, vec &p);
inline vec poly(const vec &r) { vec temp; poly(r, temp); return temp; }
void poly(const cvec &r, cvec &p);
inline cvec poly(const cvec &r) { cvec temp; poly(r, temp); return temp; }
/*! @} */


/*!
  \brief Calculate the roots of the polynomial
  \ingroup poly

  Calculate the roots \c r of the polynomial \c p

  @{
*/
void roots(const vec &p, cvec &r);
inline cvec roots(const vec &p) { cvec temp; roots(p, temp); return temp; }
void roots(const cvec &p, cvec &r);
inline cvec roots(const cvec &p) { cvec temp; roots(p, temp); return temp; }
/*! @} */


/*!
  \brief Evaluate polynomial
  \ingroup poly

  Evaluate the polynomial \c p (of length \f$N+1\f$ at the points \c x
  The output is given by
  \f[
  p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N
  \f]

  @{
*/
vec polyval(const vec &p, const vec &x);
cvec polyval(const vec &p, const cvec &x);
cvec polyval(const cvec &p, const vec &x);
cvec polyval(const cvec &p, const cvec &x);
/*! @} */

/*!
  \brief Chebyshev polynomial of the first kind
  \ingroup poly

  Chebyshev polynomials of the first kind can be defined as follows:
  \f[
  T(x) = \left\{
  \begin{array}{ll}
  \cos(n\arccos(x)),& |x| \leq 0 \\
  \cosh(n\mathrm{arccosh}(x)),& x > 1 \\
  (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1
  \end{array}
  \right.
  \f]

  \param n order of the Chebyshev polynomial
  \param x value at which the Chebyshev polynomial is to be evaluated

  \author Kumar Appaiah, Adam Piatyszek (code review)
*/
double cheb(int n, double x);

/*!
  \brief Chebyshev polynomial of the first kind
  \ingroup poly

  Chebyshev polynomials of the first kind can be defined as follows:
  \f[
  T(x) = \left\{
  \begin{array}{ll}
  \cos(n\arccos(x)),& |x| \leq 0 \\
  \cosh(n\mathrm{arccosh}(x)),& x > 1 \\
  (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1
  \end{array}
  \right.
  \f]

  \param n order of the Chebyshev polynomial
  \param x vector of values at which the Chebyshev polynomial is to
  be evaluated
  \return values of the Chebyshev polynomial evaluated for each
  element of \c x

  \author Kumar Appaiah, Adam Piatyszek (code review)
*/
vec cheb(int n, const vec &x);

/*!
  \brief Chebyshev polynomial of the first kind
  \ingroup poly

  Chebyshev polynomials of the first kind can be defined as follows:
  \f[
  T(x) = \left\{
  \begin{array}{ll}
  \cos(n\arccos(x)),& |x| \leq 0 \\
  \cosh(n\mathrm{arccosh}(x)),& x > 1 \\
  (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1
  \end{array}
  \right.
  \f]

  \param n order of the Chebyshev polynomial
  \param x matrix of values at which the Chebyshev polynomial is to
  be evaluated
  \return values of the Chebyshev polynomial evaluated for each
  element in \c x.

  \author Kumar Appaiah, Adam Piatyszek (code review)
*/
mat cheb(int n, const mat &x);
} // namespace itpp

#endif // #ifndef POLY_H