/usr/include/linbox/algorithms/bbcharpoly.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/algorithms/bbchapoly.h
*
* by Clement Pernet <clement.pernet@imag.fr>
*
* See COPYING for license information.
*/
#ifndef __BBCHARPOLY_H
#define __BBCHARPOLY_H
#define __MAXITER 5
#include <vector>
#include <map>
#include "linbox/blackbox/scalar-matrix.h"
#include "linbox/blackbox/sum.h"
#include "linbox/ring/givaro-polynomial.h"
#include "linbox/field/modular.h"
#include "linbox/field/field-traits.h"
#include "linbox/solutions/det.h"
#include "linbox/solutions/rank.h"
#include "linbox/solutions/minpoly.h"
#include "linbox/randiter/random-prime.h"
#include "linbox/algorithms/matrix-hom.h"
#include "linbox/blackbox/polynomial.h"
namespace LinBox
{
template<class FieldPoly, class IntPoly=FieldPoly>
class FactorMult ;
template < class Blackbox, class Polynomial, class Categorytag >
Polynomial&
blackboxcharpoly (Polynomial & P,
const Blackbox & A,
const Categorytag & tag,
const Method::Blackbox & M);
/* Algorithm computing the integer characteristic polynomial
* of a blackbox.
*/
template < class Blackbox >
GivPolynomial<typename Blackbox::Field::Element>&
blackboxcharpoly (GivPolynomial<typename Blackbox::Field::Element> & P,
const Blackbox & A,
const RingCategories::IntegerTag & tag,
const Method::Blackbox & M)
{
commentator.start ("Integer Blackbox Charpoly ", "IbbCharpoly");
typename Blackbox::Field intRing = A.field();
typedef Modular<uint32> Field;
typedef typename Blackbox::template rebind<Field>::other FieldBlackbox;
typedef GivPolynomialRing<typename Blackbox::Field, Dense> IntPolyDom;
typedef GivPolynomial<typename Blackbox::Field::Element> IntPoly;
typedef GivPolynomial<typename Field::Element> FieldPoly;
// Set of factors-multiplicities sorted by degree
typedef FactorMult<FieldPoly,IntPoly> FM;
typedef multimap<unsigned long,FM*> FactPoly;
typedef typename FactPoly::iterator FactPolyIterator;
multimap<FM*,bool> leadingBlocks;
//typename multimap<FM*,bool>::iterator lead_it;
FactPoly factCharPoly;
size_t n = A.coldim();
IntPolyDom IPD(intRing);
/* Computation of the integer minimal polynomial */
IntPoly intMinPoly;
minpoly (intMinPoly, A, M);
if (intMinPoly.size() == n+1){
commentator.stop ("done", NULL, "IbbCharpoly");
return P = intMinPoly;
}
/* Factorization over the integers */
vector<IntPoly*> intFactors;
vector<unsigned long> exp;
IPD.factor (intFactors, exp, intMinPoly);
size_t factnum = intFactors.size();
/* Choose a modular prime field */
RandomPrimeIterator primeg (28);
++primeg;
Field F(*primeg);
/* Building the structure of factors */
int goal = n;
for (size_t i = 0; i < intFactors.size(); ++i) {
unsigned long deg = (intFactors[i]->size()-1);
FactorMult<FieldPoly,IntPoly>* FFM=NULL;
if (exp[i] > 1) {
IntPoly *tmp = new IntPoly(*intFactors[i]);
FM* depend = NULL;
for (size_t j = 1; j <= exp[i]; ++j){
IntPoly * tmp2 = new IntPoly(*tmp);
FieldPoly * tmp2p;
typename IntPoly::template rebind<Field>() (tmp2p, *tmp2, F);
FFM = new FM (tmp2p, tmp2, 0, depend);
factCharPoly.insert (pair<size_t, FM*> (deg, FFM));
factnum++;
depend = FFM;
deg += intFactors[i]->size()-1;
if (j < exp[i])
IPD.mul (*tmp, *tmp2, *intFactors[i]);
}
delete tmp;
factnum--;
FFM->multiplicity = 1; // The last factor is present in minpoly
goal -= deg-intFactors[i]->size()+1;
leadingBlocks.insert (pair<FM*,bool>(FFM,false));
} else {
FieldPoly * fp;
typename IntPoly::template rebind<Field>() (fp, *intFactors[i], F);
FFM = new FM (fp,intFactors[i],1,NULL);
factCharPoly.insert (pair<size_t, FM* > (intFactors[i]->size()-1, FFM));
leadingBlocks.insert (pair<FM*,bool>(FFM,false));
goal -= deg;
}
}
FieldBlackbox * Ap;
MatrixHom::map(Ap, A, F);
findMultiplicities (*Ap, factCharPoly, leadingBlocks, goal, M);
// Building the integer charpoly
IntPoly intCharPoly (n+1);
IntPoly tmpP;
intRing.init (intCharPoly[0], 1);
for (FactPolyIterator it_f = factCharPoly.begin(); it_f != factCharPoly.end(); it_f++){
IPD.pow (tmpP, *it_f->second->intP, it_f->second->multiplicity);
IPD.mulin (intCharPoly, tmpP);
delete it_f->second->intP;
delete it_f->second->fieldP;
delete it_f->second;
}
commentator.stop ("done", NULL, "IbbCharpoly");
return P = intCharPoly;
}
/* Algorithm computing the characteristic polynomial
* of a blackbox over a prime field.
*/
template < class Blackbox >
GivPolynomial<typename Blackbox::Field::Element>&
blackboxcharpoly (GivPolynomial<typename Blackbox::Field::Element> & P,
const Blackbox & A,
const RingCategories::ModularTag & tag,
const Method::Blackbox & M)
{
commentator.start ("Modular Blackbox Charpoly ", "MbbCharpoly");
typedef typename Blackbox::Field Field;
typedef GivPolynomialRing<Field, Dense> PolyDom;
typedef typename PolyDom::Element Polynomial;
// Set of factors-multiplicities sorted by degree
typedef std::multimap<unsigned long,FactorMult<Polynomial>* > FactPoly;
typedef typename FactPoly::iterator FactPolyIterator;
multimap<FactorMult<Polynomial>*,bool> leadingBlocks;
//typename multimap<FactorMult<Polynomial>*,bool>::iterator lead_it;
Field F = A.field();
PolyDom PD (F);
FactPoly factCharPoly;
size_t n = A.coldim();
/* Computation of the minimal polynomial */
Polynomial minPoly;
minpoly (minPoly, A, M);
//std::cerr<<"Minpoly = "<<minPoly;
if (minPoly.size() == n+1){
commentator.stop ("done", NULL, "MbbCharpoly");
return P = minPoly;
}
/* Factorization over the field */
std::vector<Polynomial*> factors;
std::vector<unsigned long> exp;
PD.factor (factors, exp, minPoly);
size_t factnum = factors.size();
/* Building the structure of factors */
int goal = n;
for (size_t i = 0; i < factors.size(); ++i) {
unsigned long deg = (factors[i]->size()-1);
FactorMult<Polynomial>* FFM=NULL;
if (exp[i] > 1) {
Polynomial* tmp = new Polynomial(*factors[i]);
FactorMult<Polynomial>* depend = NULL;
for (size_t j = 1; j <= exp[i]; ++j){
Polynomial * tmp2 = new Polynomial(*tmp);
FFM = new FactorMult<Polynomial> (tmp2, tmp2, 0, depend);
// std::cerr<<"Inserting new factor (exp>1) : "<<(*tmp2)<<std::endl;
factCharPoly.insert (pair<size_t, FactorMult<Polynomial>*> (deg, FFM));
factnum++;
depend = FFM;
deg += factors[i]->size()-1;
if (j < exp[i])
PD.mul (*tmp, *tmp2, *factors[i]);
}
delete tmp;
factnum--;
FFM->multiplicity = 1; // The last factor is present in minpoly
goal -= deg-factors[i]->size()+1;
leadingBlocks.insert (pair<FactorMult<Polynomial>*,bool>(FFM,false));
} else {
FFM = new FactorMult<Polynomial> (factors[i],factors[i],1,NULL);
//std::cerr<<"Inserting new factor : "<<*factors[i]<<std::endl;
factCharPoly.insert (pair<size_t, FactorMult<Polynomial>* > (factors[i]->size()-1, FFM));
leadingBlocks.insert (pair<FactorMult<Polynomial>*,bool>(FFM,false));
goal -= deg;
}
}
findMultiplicities ( A, factCharPoly, leadingBlocks, goal, M);
// Building the product
Polynomial charPoly (n+1);
Polynomial tmpP;
F.init (charPoly[0], 1);
for (FactPolyIterator it_f = factCharPoly.begin(); it_f != factCharPoly.end(); it_f++){
PD.pow (tmpP, *it_f->second->fieldP, it_f->second->multiplicity);
PD.mulin (charPoly, tmpP);
delete it_f->second->fieldP;
delete it_f->second;
}
commentator.stop ("done", NULL, "MbbCharpoly");
return P = charPoly;
}
template<class FieldPoly, class IntPoly>
class FactorMult {
public:
FactorMult():multiplicity(0),dep(NULL){}
FactorMult( FieldPoly* FP, IntPoly* IP, unsigned long m, FactorMult<FieldPoly,IntPoly>*d)
: fieldP(FP), intP(IP), multiplicity(m), dep(d) {}
FactorMult (const FactorMult<FieldPoly>& FM)
: fieldP(FM.fieldP), intP(FM.intP), multiplicity(FM.multiplicity), dep(FM.dep) {}
int update (const size_t n, int * goal)
{
if (dep->dep != NULL){
FactorMult<FieldPoly,IntPoly>*curr = dep;
int k = dep->update (n,goal)+1;
int d = (dep->fieldP->size()-1)/k;
int tmp = (n-dep->multiplicity) / d;
int i = k-1;
while (curr->dep!=NULL){
curr = curr->dep;
tmp-=i*curr->multiplicity;
i--;
}
tmp = tmp/k + (multiplicity - dep->multiplicity) / d;
dep->multiplicity = tmp ;
//std::cerr<<"Updating "<<*dep->fieldP<<" --> mul = "<<tmp<<std::endl;
*goal -= tmp * (dep->fieldP->size()-1);
return k;
}
else{
int tmp = (n - 2 * dep->multiplicity + multiplicity) / (dep->fieldP->size()-1);
*goal -= tmp * (dep->fieldP->size()-1);
//std::cerr<<"Updating (leaf)"<<*dep->fieldP<<" --> mul = "<<tmp<<std::endl;
dep->multiplicity = tmp;
return 1;
}
}
FieldPoly *fieldP;
IntPoly *intP;
unsigned long multiplicity;
FactorMult<FieldPoly, IntPoly> *dep;
std::ostream& write(std::ostream& os){
return os<<" FieldPoly --> "<<fieldP
<<" IntPoly --> "<<intP
<<" multiplicity --> "<<multiplicity<<std::endl
<<" dep --> "<<dep<<std::endl;
}
};
template < class FieldPoly,class IntPoly>
void trials( list<vector<FactorMult<FieldPoly,IntPoly> > >& sols, const int goal,
vector<FactorMult<FieldPoly,IntPoly> >& ufv, const int i0 )
{
if ( !goal ){
sols.push_back( ufv);
}
else if ( goal > 0 ){
for (size_t i=i0; i<ufv.size(); ++i){
ufv[i].multiplicity++;
trials( sols, goal - ufv[i].fieldP->size()+1, ufv, i );
ufv[i].multiplicity--;
}
}
}
template <class Blackbox, class FieldPoly, class IntPoly>
void findMultiplicities( const Blackbox& A,
std::multimap<unsigned long, FactorMult<FieldPoly,IntPoly>* >& factCharPoly,
std::multimap<FactorMult<FieldPoly,IntPoly>*,bool>& leadingBlocks,
int goal,
const Method::Blackbox &M)
{
typedef multimap<unsigned long, FactorMult<FieldPoly,IntPoly>* > FactPoly;
typedef typename Blackbox::Field Field;
typedef GivPolynomialRing<Field, Dense> PolyDom;
typename FactPoly::iterator itf = factCharPoly.begin();
typename multimap<FactorMult<FieldPoly,IntPoly>*,bool>::iterator lead_it;
Field F = A.field();
PolyDom PD(F);
size_t factnum = factCharPoly.size();
size_t n = A.coldim();
/* Rank for the linear factors */
while ( ( factnum > 1 ) && ( itf->first == 1) ){
lead_it = leadingBlocks.find(itf->second);
if ( lead_it != leadingBlocks.end())
lead_it->second = true;
long unsigned int r;
/* The matrix Pi (A) */
if (F.isZero (itf->second->fieldP->operator[](0))){
rank (r, A, M) ;
} else {
PolynomialBB<Blackbox, FieldPoly > PA (A, *itf->second->fieldP);
rank (r, PA, M) ;
}
itf->second->multiplicity = r;
//std::cerr<<"Rank 1 : "<<*itf->second->fieldP<<" --> "<<r<<std::endl;
factnum--;
itf++;
}
size_t maxIter = __MAXITER;//MAX( __MAXITER, sqrt(IspBB.mnz() ) );
// Rank for the other factorspair
while ( factnum > maxIter ){
lead_it = leadingBlocks.find (itf->second);
if ( lead_it != leadingBlocks.end())
lead_it->second = true;
PolynomialBB<Blackbox, FieldPoly > PA (A, *itf->second->fieldP);
long unsigned int r;
rank (r, PA, M);
itf->second->multiplicity =r;
//std::cerr<<"Rank > 1 : "<<*itf->second->fieldP<<" --> "<<r<<std::endl;
factnum--;
itf++;
}
// update the multiplicities
for (lead_it = leadingBlocks.begin(); lead_it != leadingBlocks.end(); lead_it++){
FactorMult<FieldPoly,IntPoly>* currFFM = lead_it->first;
//std::cerr<<"Updating multiplicities of "<<*lead_it->first->fieldP<<std::endl;
if (!lead_it->second){ // the leading block has not been computed
// go to the last computed multiplicity of the sequence
while (currFFM->dep!=NULL){
if (currFFM->dep->multiplicity != 0)
break;
currFFM = currFFM->dep;
}
if (currFFM->dep != NULL){
// Need one more computation:
PolynomialBB<Blackbox, FieldPoly > PA (A, *currFFM->fieldP);
long unsigned int r;
rank (r, PA, M) ;
//std::cerr<<"extra factor : "<<*currFFM->fieldP<<" --> "<<r<<std::endl;
int tmp = currFFM->multiplicity;
currFFM->multiplicity = r;
currFFM->update (n,&goal);
currFFM->multiplicity = tmp;
}
} else {
int lbm;
if (currFFM->dep != NULL){
int k = currFFM->update (n,&goal)+1;
int d = (lead_it->first->fieldP->size()-1) / k;
lbm = (n-lead_it->first->multiplicity) / d;
currFFM = currFFM->dep;
do{
lbm -= currFFM->multiplicity * (currFFM->fieldP->size()-1);
currFFM = currFFM->dep;
} while (currFFM!=NULL);
lbm /= k;
goal -= (lbm-1)*(lead_it->first->fieldP->size()-1);
}else {
lbm = (n-lead_it->first->multiplicity) / (lead_it->first->fieldP->size()-1);
goal -= (lbm-1)*(lead_it->first->fieldP->size()-1);
}
lead_it->first->multiplicity = lbm;
}
}
// Recursive search
typename FactPoly::iterator firstUnknowFactor = itf;
if ( factnum <= __MAXITER ){
std::vector<FactorMult<FieldPoly,IntPoly> > unknownFact (factnum);
for (size_t i = 0; i < factnum; ++i, itf++){
unknownFact[i] = *itf->second;
}
std::list<vector<FactorMult<FieldPoly,IntPoly> > > sols;
trials (sols, goal,unknownFact, 0);
typename list<vector<FactorMult<FieldPoly,IntPoly> > >::iterator uf_it = sols.begin();
if (sols.size()>1){
// Evaluation of P in random gamma
typename Field::Element d, gamma, mgamma, d2;
typename Field::RandIter g(F);
do
g.random(gamma);
while (F.isZero(gamma));
//Building the matrix A + gamma.Id mod p
F.neg( mgamma, gamma );
ScalarMatrix<Field> gammaId( F, n, gamma );
Sum<Blackbox,ScalarMatrix<Field> > Agamma(A, gammaId);
// Compute det (A+gamma.Id)
det (d, Agamma, M);
if (A.rowdim()%2)
F.negin(d);
// Compute Prod(Pi(-gamma)^mi)
typename Field::Element tmp, e;
F.init (d2,1);
typename FactPoly::iterator it_f=factCharPoly.begin();
PolyDom PD (F);
for (size_t i = 0; i < factCharPoly.size()-factnum; ++i, it_f++){
PD.eval (tmp, *it_f->second->fieldP, mgamma);
for (size_t j=0; j < it_f->second->multiplicity; ++j)
F.mulin (d2, tmp);
}
while ( uf_it != sols.end() ){
F.init (e,1);
for (size_t i = 0; i < uf_it->size(); ++i){
PD.eval( tmp, *(*uf_it)[i].fieldP, mgamma );
for (size_t j=0; j < (*uf_it)[i].multiplicity; ++j)
F.mulin( e, tmp );
}
F.mulin( e, d2);
if (F.areEqual(e,d))
break;
uf_it++;
}
if (uf_it == sols.end())
std::cerr<<"FAIL:: No solutions found in recursive seach"<<endl;
} // At this point, uf_it points on the good solution
// update with the good multiplicities
typename FactPoly::iterator it_f = firstUnknowFactor;
typename std::vector<FactorMult<FieldPoly,IntPoly> >::iterator it_fm = (*uf_it).begin();
for (; it_f != factCharPoly.end(); it_f++, it_fm++)
it_f->second->multiplicity = it_fm->multiplicity;
}
}
}
#endif // __BBCHARPOLY_H
|