/usr/include/linbox/algorithms/bbsolve.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/algorithms/bbsolve.h
* (was linbox/sollutions/solve.h)
* by Bradford Hovinen <hovinen@cis.udel.edu>
*
* See COPYING for license information.
*/
#ifndef __BBSOLVE_H
#define __BBSOLVE_H
#include <vector>
#include <algorithm>
// must fix this list...
#include "linbox/algorithms/wiedemann.h"
#include "linbox/algorithms/lanczos.h"
#include "linbox/algorithms/mg-block-lanczos.h"
#include "linbox/blackbox/dense.h"
#include "linbox/util/debug.h"
#include "linbox/vector/vector-domain.h"
#include "linbox/solutions/methods.h"
namespace LinBox
{
// /** @name Solvers
// * @brief Solving linear system Ax = b over the field F.
// */
// //@{
/*
// for specialization on method.
template <class Field, class Vector, class Blackbox, class MyMethod>
Vector& solve (const Blackbox&A,
Vector &x,
const Vector &b,
const Field &F,
const MyMethod & m );
*/
/** Solve Ax=b over field F using Wiedemann's method, with inconsistency certificate.
*
* This is a general interface for the linear system solving
* capabilities of LinBox. If the system is nonsingular, it returns
* the unique solution, storing it in the vector x. If the system is
* consistent and singular, it returns a random solution. Repeated
* calls to this function can give a complete description of the
* solution manifold. If the system is inconsistent and the
* \Ref{SolverTraits} structure supplied requests certification of
* inconsistency, it fills in the certificate of
* inconsistency. Otherwise, it runs through the number of iterations
* specified in @code{traits} and throws a \Ref{SolveFailed} exception
* if it cannot find a solution.
*
* This specialization uses Wiedemann's algorithm and is the default.
*
* @param A Black box matrix of the system
* @param x Place to store solution vector
* @param b Right-hand side
* @param u Vector in which to store certificate of inconsistency, if required
* @param F Field over which to perform computations
* @param traits \Ref{SolverTraits} structure with user-specified parameters
* @return Reference to solution vector
*/
template <class Field, class Vector, class Blackbox>
typename WiedemannSolver<Field>::ReturnStatus
solve (const Blackbox &A,
Vector &x,
const Vector &b,
Vector &u,
const Field &F,
const WiedemannTraits &traits = WiedemannTraits ())
{
WiedemannSolver<Field> solver (F, traits);
return solver.solve (A, x, b, u);
}
/** Solve Ax=b over field F using the Wiedemann method.
*
* This version differs from the one above in that there is no extra
* parameter for the certificate of inconsistency, and it throws
* exceptions if the solution fails. It also returns a reference to
* the solution vector.
*/
template <class Field, class Vector, class Blackbox>
Vector &solve (const Blackbox &A,
Vector &x,
const Vector &b,
const Field &F,
const WiedemannTraits &traits = WiedemannTraits ())
{
Vector u;
WiedemannSolver<Field> solver (F, traits);
VectorWrapper::ensureDim (u, A.rowdim ());
switch (solver.solve (A, x, b, u)) {
case WiedemannSolver<Field>::OK:
return x;
case WiedemannSolver<Field>::FAILED:
throw SolveFailed ();
case WiedemannSolver<Field>::SINGULAR:
throw SolveFailed ();
case WiedemannSolver<Field>::INCONSISTENT:
throw InconsistentSystem<Vector> (u);
default:
throw LinboxError ("Bad return value from solve");
}
}
/** Solve Ax=b over field F using the Lanczos method.
*
* This is a general interface for the linear system solving capabilities of
* LinBox. If the system is nonsingular, it returns the unique solution, storing
* it in the vector x. If the system is consistent and singular, it returns a
* random solution. Repeated calls to this function can give a complete
* description of the solution manifold. If the system is inconsistent and the
* \Ref{SolverTraits} structure has result checking turned on, it runs through
* the number of iterations specified in @code{traits} and throws a
* \Ref{SolveFailed} exception if it cannot find a solution.
*
* This specialization uses the Lanczos algorithm.
*
* @param A Black box matrix of the system
* @param x Place to store solution vector
* @param b Right-hand side
* @param F Field over which to perform computations
* @param traits \Ref{SolverTraits} structure with user-specified parameters
* @return Reference to solution vector
*/
template <class Field, class Vector, class Blackbox>
Vector &solve (const Blackbox &A,
Vector &x,
const Vector &b,
const Field &F,
const LanczosTraits &traits)
{
LanczosSolver<Field, Vector> solver (F, traits);
return solver.solve (A, x, b);
}
/** Solve Ax=b over field F using the block Lanczos method.
*
* This is a general interface for the linear system solving capabilities of
* LinBox. If the system is nonsingular, it returns the unique solution, storing
* it in the vector x. If the system is consistent and singular, it returns a
* random solution. Repeated calls to this function can give a complete
* description of the solution manifold. If the system is inconsistent and the
* \Ref{SolverTraits} structure has result checking turned on, it runs through
* the number of iterations specified in @code{traits} and throws a
* \Ref{SolveFailed} exception if it cannot find a solution.
*
* This specialization uses the block Lanczos algorithm.
*
* @param A Black box matrix of the system
* @param x Place to store solution vector
* @param b Right-hand side
* @param F Field over which to perform computations
* @param traits \Ref{SolverTraits} structure with user-specified parameters
* @return Reference to solution vector
*/
template <class Field, class Vector, class Blackbox>
Vector &solve (const Blackbox &A,
Vector &x,
const Vector &b,
const Field &F,
const BlockLanczosTraits &traits)
{
MGBlockLanczosSolver<Field> solver (F, traits);
solver.solve (A, x, b);
return x;
}
/** Solve Ax=b over field F using Gaussian elimination.
*
* This is a general interface for the linear system solving capabilities of
* LinBox. If the system is nonsingular, it returns the unique solution, storing
* it in the vector x. If the system is consistent and singular, it returns a
* random solution. Repeated calls to this function can give a complete
* description of the solution manifold. If the system is inconsistent and the
* \Ref{SolverTraits} structure supplied requests certification of
* inconsistency, it throws an \Ref{InconsistentSystem} exception, which
* includes a certificate of inconsistency. Otherwise, it runs through the
* number of iterations specified in @code{traits} and throws a
* \Ref{SolveFailed} exception if it cannot find a solution.
*
* @param A Black box matrix of the system
* @param x Place to store solution vector
* @param b Right-hand side
* @param F Field over which to perform computations
* @param traits \Ref{SolverTraits} structure with user-specified parameters
* @return Reference to solution vector
*/
template <class Field, class Matrix, class Vector>
Vector &solve (const Matrix &A,
Vector &x,
const Vector &b,
const Field &F,
const BlasEliminationTraits &traits)
{
// N.B. This is a place holder; I am intending to fix this very shortly
throw LinboxError ("Elimination-based solver not implemented");
return x;
}
/** Enumeration for results of next solver.
*
* SOLVE_SUCCESSFUL - System solution was succesful, @code{x} holds the solution
* vector
* SOLVE_INCONSISTENT - System was inconsistent, @code{u} holds the certificate
* of inconsistency and @code{x} is untouched
* SOLVE_FAILED - Neither a system solution nor a certificate of inconsistency
* could be obtained before the maximum number of trials elapsed. Both @code{x}
* and @code{u} are untouched.
*/
enum SolveResult {
SOLVE_SUCCESSFUL, SOLVE_INCONSISTENT, SOLVE_FAILED
};
/** Solve Ax=b over field F, returning consistency indicator
*
* This is a variant of @code{solve} that does not throw any exceptions unless
* the user makes an error. It returns a \Ref{SolveResult} enum indicating
* whether the solve operation was successful, the system was inconsistent, or
* the solve operation failed. The certificate of inconsistency, if requested,
* is stored in a reference parameter supplied to this variant.
*
* @param A Black box matrix of the system
* @param x Place to store solution vector
* @param b Right-hand side
* @param u Place to store certificate of inconsistency
* @param F Field over which to perform computations
* @param traits \Ref{SolverTraits} structure with user-specified parameters
* @return \Ref{SolveResult} indicating whether the solve operation was
* successful
*/
template <class Field, class Blackbox, class Vector, class MethodTraits>
SolveResult solve (const Blackbox &A,
Vector &x,
const Vector &b,
const Field &F,
Vector &u,
const MethodTraits &traits = MethodTraits ())
{
try {
solve (A, x, b, F, traits);
}
catch (SolveFailed) {
return SOLVE_FAILED;
}
catch (InconsistentSystem<Vector> e) {
VectorDomain<Field> VD (F);
F.copy (u, e.certificate ());
return SOLVE_INCONSISTENT;
}
return SOLVE_SUCCESSFUL;
}
// //@}
}
#endif // __BBSOLVE_H
|