/usr/include/linbox/algorithms/blas-domain.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/algorithms/blas-domain.h
* Copyright (C) 2004 Pascal Giorgi, Clément Pernet
*
* Written by :
* Pascal Giorgi pascal.giorgi@ens-lyon.fr
* Clément Pernet clement.pernet@imag.fr
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef __BLAS_MATRIX_DOMAIN_H
#define __BLAS_MATRIX_DOMAIN_H
#include <iostream>
#include <vector>
#include <linbox/ffpack/ffpack.h>
#include <linbox/fflas/fflas.h>
//#include <linbox/blackbox/permutation.h>
#include <linbox/matrix/blas-matrix.h>
#include <linbox/util/debug.h>
namespace LinBox {
const int BlasBound = 1 << 26;
/** Class handling multiplication of a Matrix by an Operand with accumulation and scaling.
* Operand can be either a matrix or a vector.
*
* The only function: operator () is defined :
* D = beta.C + alpha. A*B
* C = beta.C + alpha. A*B
*/
template< class Field, class Operand1, class Operand2, class Operand3>
class BlasMatrixDomainMulAdd {
public:
Operand1 &operator() (const Field &F,
Operand1 &D,
const typename Field::Element &beta, const Operand1 &C,
const typename Field::Element &alpha, const Operand2 &A, const Operand3 &B) const;
Operand1 &operator() (const Field &F,
const typename Field::Element &beta, Operand1 &C,
const typename Field::Element &alpha, const Operand2 &A, const Operand3 &B) const;
// allowing disymetry of Operand2 and Operand3 (only if different type)
Operand1 &operator() (const Field &F,
Operand1 &D,
const typename Field::Element &beta, const Operand1 &C,
const typename Field::Element &alpha, const Operand3 &A, const Operand2 &B) const;
Operand1 &operator() (const Field &F,
const typename Field::Element &beta, Operand1 &C,
const typename Field::Element &alpha, const Operand3 &A, const Operand2 &B) const;
};
/* Class handling in-place multiplication of a Matrix by an Operand
* Operand can be either a matrix a permutation or a vector
*
* only function: operator () are defined :
* A = A*B
* B = A*B
* Note that in-place multiplications are proposed for the specialization
* with a matrix and a permutation.
* Using mulin with two matrices is still defined but is non-sense
*/
template< class Field, class Operand1, class Operand2, class Operand3>
class BlasMatrixDomainMul {
public:
Operand1 &operator() (const Field &F,
Operand1 &C, const Operand2 &A, const Operand3 &B) const
{
typename Field::Element zero, one;
F.init( zero, 0UL );
F.init( one, 1UL );
return BlasMatrixDomainMulAdd<Field,Operand1,Operand2,Operand3>()( F, zero, C, one, A, B );
}
};
// Operand 2 is always the type of the matrix which is not modified
// ( for example: BlasPermutation TriangularBlasMatrix )
template< class Field, class Operand1, class Operand2>
class BlasMatrixDomainMulin {
public:
// Defines a dummy mulin over generic matrices using a temporary
Operand1 &operator() (const Field &F,
Operand1 &A, const Operand2 &B) const
{
typename Field::Element zero, one;
F.init( zero, 0UL );
F.init( one, 1UL );
Operand1* tmp = new Operand1(A);
// Effective copy of A
*tmp = A;
BlasMatrixDomainMulAdd<Field,Operand1,Operand1,Operand2>()( F, zero, A, one, *tmp, B );
delete tmp;
return A;
}
Operand1 &operator() (const Field &F,
const Operand2 &A, Operand1 &B ) const
{
typename Field::Element zero, one;
F.init( zero, 0UL );
F.init( one, 1UL );
Operand1* tmp = new Operand1(B);
// Effective copy of B
*tmp = B;
BlasMatrixDomainMulAdd<Field,Operand1,Operand1,Operand2>()( F, zero, B, one, A, *tmp );
delete tmp;
return B;
}
};
/* Class handling inversion of a Matrix
*
* only function: operator () are defined :
* Ainv = A^(-1)
*
* Beware, if A is not const this allows an inplace computation
* and so A will be modified
*
* Returns nullity of matrix (0 iff inversion was ok)
*/
template< class Field, class Matrix>
class BlasMatrixDomainInv {
public:
int &operator() (const Field &F, Matrix &Ainv, const Matrix &A) const;
int &operator() (const Field &F, Matrix &Ainv, Matrix &A) const;
};
/* Class handling rank computation of a Matrix
*
* only function: operator () are defined :
* return the rank of A
*
* Beware, if A is not const this allows an inplace computation
* and so A will be modified
*/
template< class Field, class Matrix>
class BlasMatrixDomainRank {
public:
unsigned int &operator() (const Field &F, const Matrix& A) const;
unsigned int &operator() (const Field &F, Matrix& A) const;
};
/* Class handling determinant computation of a Matrix
*
* only function: operator () are defined :
* return the determinant of A
*
* Beware, if A is not const this allows an inplace computation
* and so A will be modified
*/
template< class Field, class Matrix>
class BlasMatrixDomainDet {
public:
typename Field::Element operator() (const Field &F, const Matrix& A) const;
typename Field::Element operator() (const Field &F, Matrix& A) const;
};
/* Class handling resolution of linear system of a Matrix
* with Operand as right or left and side
*
* only function: operator () are defined :
* X = A^(-1).B
* B = A^(-1).B
*/
template< class Field, class Operand, class Matrix>
class BlasMatrixDomainLeftSolve {
public:
Operand &operator() (const Field &F, Operand &X, const Matrix &A, const Operand &B) const;
Operand &operator() (const Field &F, const Matrix &A, Operand &B) const;
};
/* Class handling resolution of linear system of a Matrix
* with Operand as right or left and side
*
* only function: operator () are defined :
* X = B.A^(-1)
* B = B.A^(-1)
*/
template< class Field, class Operand, class Matrix>
class BlasMatrixDomainRightSolve {
public:
Operand &operator() (const Field &F, Operand &X, const Matrix &A, const Operand &B) const;
Operand &operator() (const Field &F, const Matrix &A, Operand &B) const;
};
template< class Field, class Polynomial, class Matrix>
class BlasMatrixDomainMinpoly {
public:
Polynomial& operator() (const Field &F, Polynomial& P, const Matrix& A) const;
};
template< class Field, class ContPol, class Matrix>
class BlasMatrixDomainCharpoly {
public:
// typedef Container<Polynomial> ContPol;
ContPol& operator() (const Field &F, ContPol& P, const Matrix& A) const;
};
/*
* Interface for all functionnalities provided
* for BlasMatrix through specialization of all
* classes defined above.
*/
template <class Field>
class BlasMatrixDomain {
public:
typedef typename Field::Element Element;
protected:
const Field & _F;
Element _One;
Element _Zero;
Element _MOne;
public:
// Constructor of BlasDomain.
BlasMatrixDomain (const Field& F ): _F(F) { F.init(_One,1UL); F.init(_Zero,0UL);F.init(_MOne,-1);}
// Copy constructor
BlasMatrixDomain (const BlasMatrixDomain<Field> & BMD) : _F(BMD._F), _One(BMD._One), _Zero(BMD._Zero), _MOne(BMD._MOne) {}
// Field accessor
Field& field() {return _F;}
/*
* Basics operation available matrix respecting BlasMatrix interface
*/
// multiplication
// C = A*B
template <class Operand1, class Operand2, class Operand3>
Operand1& mul(Operand1& C, const Operand2& A, const Operand3& B) const {
return BlasMatrixDomainMul<Field,Operand1,Operand2,Operand3>()(_F,C,A,B);
}
// multiplication with scaling
// C = alpha.A*B
template <class Operand1, class Operand2, class Operand3>
Operand1& mul(Operand1& C, const Element& alpha, const Operand2& A, const Operand3& B) const {
return muladdin(_Zero,C,alpha,A,B);
}
// In place multiplication
// A = A*B
template <class Operand1, class Operand2>
Operand1& mulin_left(Operand1& A, const Operand2& B ) const {
return BlasMatrixDomainMulin<Field,Operand1,Operand2>()(_F,A,B);
}
// In place multiplication
// B = A*B
template <class Operand1, class Operand2>
Operand2& mulin_right(const Operand1& A, Operand2& B ) const {
return BlasMatrixDomainMulin<Field,Operand2,Operand1>()(_F,A,B);
}
// axpy
// D = A*B + C
template <class Operand1, class Operand2, class Operand3>
Operand1& axpy(Operand1& D, const Operand2& A, const Operand3& B, const Operand1& C) const {
return muladd(D,_One,C,_One,A,B);
}
// axpyin
// C += A*B
template <class Operand1, class Operand2, class Operand3>
Operand1& axpyin(Operand1& C, const Operand2& A, const Operand3& B) const {
return muladdin(_One,C,_One,A,B);
}
// axmy
// D= A*B - C
template <class Operand1, class Operand2, class Operand3>
Operand1& axmy(Operand1& D, const Operand2& A, const Operand3& B, const Operand1& C) const {
return muladd(D,_MOne,C,_One,A,B);
}
// axmyin
// C = A*B - C
template <class Operand1, class Operand2, class Operand3>
Operand1& axmyin(Operand1& C, const Operand2& A, const Operand3& B) const {
return muladdin(_MOne,C,_One,A,B);
}
// general matrix-matrix multiplication and addition with scaling
// D= beta.C + alpha.A*B
template <class Operand1, class Operand2, class Operand3>
Operand1& muladd(Operand1& D, const Element& beta, const Operand1& C,
const Element& alpha, const Operand2& A, const Operand3& B) const {
return BlasMatrixDomainMulAdd<Field,Operand1,Operand2,Operand3>()(_F,D,beta,C,alpha,A,B);
}
// C= beta.C + alpha.A*B
template <class Operand1, class Operand2, class Operand3>
Operand1& muladdin(const Element& beta, Operand1& C,
const Element& alpha, const Operand2& A, const Operand3& B) const {
return BlasMatrixDomainMulAdd<Field,Operand1,Operand2,Operand3>()(_F,beta,C,alpha,A,B);
}
/*
* Solutions available for matrix respecting BlasMatrix interface
*/
// Inversion
template <class Matrix>
Matrix& inv( Matrix &Ainv, const Matrix &A) const {
BlasMatrixDomainInv<Field,Matrix>()(_F,Ainv,A);
return Ainv;
}
// Inversion (the matrix A is modified)
template <class Matrix>
Matrix& invin( Matrix &Ainv, Matrix &A) const {
BlasMatrixDomainInv<Field,Matrix>()(_F,Ainv,A);
return Ainv;
}
// Inversion w singular check
template <class Matrix>
Matrix& inv( Matrix &Ainv, const Matrix &A, int& nullity) const {
nullity = BlasMatrixDomainInv<Field,Matrix>()(_F,Ainv,A);
return Ainv;
}
// Inversion (the matrix A is modified) w singular check
template <class Matrix>
Matrix& invin( Matrix &Ainv, Matrix &A, int& nullity) const {
nullity = BlasMatrixDomainInv<Field,Matrix>()(_F,Ainv,A);
return Ainv;
}
// Rank
template <class Matrix>
unsigned int rank(const Matrix &A) const {
return BlasMatrixDomainRank<Field,Matrix>()(_F,A);
}
// in-place Rank (the matrix is modified)
template <class Matrix>
unsigned int rankin(Matrix &A) const {
return BlasMatrixDomainRank<Field, Matrix>()(_F,A);
}
// determinant
template <class Matrix>
Element det(const Matrix &A) const {
return BlasMatrixDomainDet<Field, Matrix>()(_F,A);
}
//in-place Determinant (the matrix is modified)
template <class Matrix>
Element detin(Matrix &A) const {
return BlasMatrixDomainDet<Field, Matrix>()(_F,A);
}
/*
* Solvers for Matrix (respecting BlasMatrix interface)
* with Operand as right or left hand side
*/
// inear solve with matrix right hand side
// AX=B
template <class Operand, class Matrix>
Operand& left_solve (Operand& X, const Matrix& A, const Operand& B) const {
return BlasMatrixDomainLeftSolve<Field,Operand,Matrix>()(_F,X,A,B);
}
// linear solve with matrix right hand side, the result is stored in-place in B
// A must be square
// AX=B , (B<-X)
template <class Operand,class Matrix>
Operand& left_solve (const Matrix& A, Operand& B) const {
return BlasMatrixDomainLeftSolve<Field,Operand,Matrix>()(_F,A,B);
}
// linear solve with matrix right hand side
// XA=B
template <class Operand, class Matrix>
Operand& right_solve (Operand& X, const Matrix& A, const Operand& B) const {
return BlasMatrixDomainRightSolve<Field,Operand,Matrix>()(_F,X,A,B);
}
// linear solve with matrix right hand side, the result is stored in-place in B
// A must be square
// XA=B , (B<-X)
template <class Operand, class Matrix>
Operand& right_solve (const Matrix& A, Operand& B) const {
return BlasMatrixDomainRightSolve<Field,Operand,Matrix>()(_F,A,B);
}
// minimal polynomial computation
template <class Polynomial, class Matrix>
Polynomial& minpoly( Polynomial& P, const Matrix& A ) const{
return BlasMatrixDomainMinpoly<Field, Polynomial, Matrix>()(_F,P,A);
}
template <class Polynomial, class Matrix >
Polynomial& charpoly( Polynomial& P, const Matrix& A ) const{
commentator.start ("Modular Dense Charpoly ", "MDCharpoly");
std::list<Polynomial> P_list;
P_list.clear();
BlasMatrixDomainCharpoly<Field, std::list<Polynomial>, Matrix >()(_F,P_list,A);
Polynomial tmp(A.rowdim()+1);
typename std::list<Polynomial>::iterator it = P_list.begin();
P = *(it++);
while( it!=P_list.end() ){
// Waiting for an implementation of a domain of polynomials
mulpoly( tmp, P, *it);
P = tmp;
// delete &(*it);
++it;
}
commentator.stop ("done", NULL, "MDCharpoly");
return P;
}
template <class Polynomial, class Matrix >
std::list<Polynomial>& charpoly( std::list<Polynomial>& P, const Matrix& A ) const{
return BlasMatrixDomainCharpoly<Field, std::list<Polynomial>, Matrix >()(_F,P,A);
}
//private:
// Temporary: waiting for an implementation of a domain of polynomial
template<class Polynomial>
Polynomial &
mulpoly(Polynomial &res, const Polynomial & P1, const Polynomial & P2)const{
size_t i,j;
res.resize(P1.size()+P2.size()-1);
for (i=0;i<res.size();i++)
_F.assign(res[i],_Zero);
for ( i=0;i<P1.size();i++)
for ( j=0;j<P2.size();j++)
_F.axpyin(res[i+j],P1[i],P2[j]);
return res;
}
}; /* end of class BlasMatrixDomain */
} /* end of namespace LinBox */
#include <linbox/algorithms/blas-domain.inl>
#endif /* __BLAS_DOMAIN_H*/
|