This file is indexed.

/usr/include/linbox/algorithms/matrix-inverse.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */

/* File: matrix-inverse.h
 *  Author: Zhendong Wan
 * draft date: 09-27-2003
 *
 * modified by Pascal Giorgi 1/07/04
 * put the Field as template parameter 
 * and add Field F as a parameter
 */


#ifndef __LINBOX__MATRIX_INVERSE_H__
#define __LINBOX__MATRIX_INVERSE_H__

#include <linbox/util/debug.h>
#include <linbox/util/error.h>
#include <vector>
#include <algorithm>

namespace LinBox 
{    
	class MatrixInverse {
	
	public:

		/** \brief compute the inverse of a dense matrix, by Gaussian elimination.
		 *  The matrix should support ColIterator and RowIterator.
		 *  It returns 0, if an inverse is found, and  
		 *  returns 1, otherwise.
		 */
		template<class Field, class DenseMatrix>
		static  long matrixInverseIn(const Field& F, DenseMatrix& A) {
		    
			// check if A is a square matrix
			linbox_check(A.rowdim() == A. coldim());
	
			// PG 1/07/04 
			//typedef typename DenseMatrix::Field Field;

			// step1 PLU Inplcae, actually, LPA = U.
			std::vector<std::pair<int,int> > P;
			P.reserve (A.rowdim());

			typename DenseMatrix::RowIterator cur_r, tmp_r;
			typename DenseMatrix::ColIterator cur_c, tmp_c;
			typename DenseMatrix::Row::iterator cur_rp, tmp_rp;
			typename DenseMatrix::Col::iterator cur_cp, tmp_cp;
	
			std::vector<typename Field::Element> tmp_v (A.rowdim());

			typename Field::Element tmp_e;
			
			// PG 1/07/04
			//const Field F = A. field();
       
			int offset = 0;

			cur_r = A. rowBegin(); 
			cur_c = A. colBegin();
			for( ; cur_r != A. rowEnd(); ++ cur_r, ++ cur_c, ++ offset) { 
			//for(cur_r = A. rowBegin(), cur_c = A. colBegin(); cur_r != A. rowEnd(); ++ cur_r, ++ cur_c, ++ offset) {
	    
				//try to find the pivot.
				tmp_r = cur_r;

				tmp_cp = cur_c -> begin() + offset;

				while ((tmp_cp != cur_c -> end()) && F.isZero(*tmp_cp)) {
					++ tmp_cp;
					++ tmp_r;
				}

				if (tmp_cp == cur_c -> end()) return 1;

				//if swicth two row if nessary. Each row in dense matrix is stored in contiguous space
				if (tmp_r != cur_r) { 
					P.push_back(std::pair<int,int>(offset, (int)(tmp_cp - cur_c -> begin()) ) );

					std::copy (tmp_r -> begin(), tmp_r -> end(), tmp_v.begin());

					std::copy (cur_r -> begin(), cur_r -> end(), tmp_r -> begin());

					std::copy (tmp_v.begin(), tmp_v.end(), cur_r -> begin());
				}

				// continue gauss elimination
	 
				for(tmp_r = cur_r + 1; tmp_r != A.rowEnd(); ++ tmp_r) {	   
		
					//see if need to update the row
					if (!F.isZero(*(tmp_r -> begin() + offset ))) {
		    
						F.div (tmp_e, *(tmp_r -> begin() + offset), *(cur_r -> begin() + offset));

						F.negin(tmp_e);		    
				
						for ( cur_rp = cur_r ->begin(),tmp_rp =  tmp_r -> begin(); 
						      tmp_rp != tmp_r -> end(); ++ tmp_rp, ++ cur_rp )

							F.axpyin ( *tmp_rp, *cur_rp, tmp_e);

						F.assign(*(tmp_r -> begin() + offset), tmp_e);
					}
				}
	    
			}
	

			//second compute inverse of A.
			DenseMatrix tmp(A);

	
			//2a compute inverse of PA, by solving upper-triangeular system, PA = U^{-1} L.
			typename Field::Element Zero;
			typename Field::Element N_one;
			F.init(Zero,0);
			F.init(N_one, -1);
	
			offset = 0;
			for(cur_c = A.colBegin();cur_c != A. colEnd(); ++ cur_c, ++ offset) {
	    
				for (cur_cp = cur_c -> begin();
				     cur_cp != cur_c -> begin() + offset; ++ cur_cp)
					F.assign (*cur_cp, Zero);

				F.assign(*cur_cp, N_one); ++ cur_cp;

				for (; cur_cp != cur_c -> end(); ++ cur_cp)
					F.negin(*cur_cp);

				//matrix is indexed by 0, instead of 1.	

				for (cur_cp = cur_c -> begin() + (A.rowdim() - 1), tmp_r = tmp.rowBegin() + ( A.rowdim() - 1);
				     cur_cp != cur_c -> begin() - 1; -- cur_cp, -- tmp_r) {
		
					F.assign (tmp_e, *cur_cp);
		
					for(tmp_cp = cur_c -> begin() + (A.rowdim() - 1), tmp_rp = tmp_r -> begin() + ( A.rowdim() -1);
					    tmp_cp != cur_cp; -- tmp_cp, -- tmp_rp) 
						F.axpyin(tmp_e, *tmp_cp, *tmp_rp);
		
					F. div(*cur_cp, tmp_e, *tmp_rp);		

					F.negin(*cur_cp);

				}
	    
			}
	

	
			// 2b, compute inverse of A, A^{-1} = (PA)^{-1} P
			std::vector<std::pair<int, int> >::reverse_iterator v_p;

			for(v_p = P.rbegin(); v_p != P.rend(); ++ v_p) {

				cur_c = A.colBegin() + v_p -> first;
	    
				tmp_c = A.colBegin() + v_p -> second;

				std::copy (cur_c -> begin(), cur_c -> end(), tmp_v.begin());

				std::copy (tmp_c -> begin(), tmp_c -> end(), cur_c -> begin());

				std::copy (tmp_v.begin(), tmp_v.end(), tmp_c -> begin());

			}
         
	
			return 0;
		}
	};

	template<>
	inline long MatrixInverse::matrixInverseIn(const MultiModDouble& F, BlasBlackbox<MultiModDouble>& A) {
		throw LinboxError("LinBox ERROR: use of MultiModDouble with too large moduli is not allowed at this time\n");
		return 0;
	}

} // namespace LinBox


#endif