This file is indexed.

/usr/include/linbox/algorithms/rational-solver.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/algorithms/lifting-container.h
 * Copyright (C) 2004 Zhendong Wan, Pascal Giorgi
 *
 * Written by Zhendong Wan  <wan@mail.eecis.udel.edu> 
 *         and Pascal Giorgi <pascal.giorgi@ens-lyon.fr>
 * Modified by David Pritchard  <daveagp@mit.edu>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

#ifndef __LINBOX_RATIONAL_SOLVER_H
#define __LINBOX_RATIONAL_SOLVER_H

#include <iostream>

#include <linbox/solutions/methods.h>
#include <linbox/blackbox/archetype.h>
#include <linbox/blackbox/lambda-sparse.h>
#include <linbox/blackbox/compose.h>
#include <linbox/matrix/blas-matrix.h>
#include <linbox/algorithms/vector-fraction.h>
#include <linbox/util/timer.h>

//#define RSTIMING
#define DEFAULT_PRIMESIZE 20 

namespace LinBox {// LinBox

	// bsd and mac problem
#undef _R
	
#define SINGULARITY_THRESHOLD 5
#define BAD_PRECONTITIONER_THRESHOLD 5
#define DEFAULT_MAXPRIMES 5
#define SL_DEFAULT SL_LASVEGAS

	 
	
	/** @defgroup padic p-adic lifting for linear system solutions.
	 *  @brief interface for solving linear system by p-adic lifting technique over the quotient field of a ring.
	 *  i.e. solution over the rational for an integer linear system.
	 *
	 * \par Headers
	 *  #include<linbox/algorithms/rational-solver.h>
	 * 
	 * \par References
	 *
	 *  See the following reference for details on this algorithm:
	 *
	 *  - Robert T. Moenck and John H. Carter: Approximate algorithms to derive exact solutions to system
	 *  of linear equations. In Proc. EUROSAM'79, volume 72 of Lectures Note in Computer Science, pages 65-72,
	 *  Berlin-Heidelberger-New York, 1979. Springer-Verlag.
	 *  .
	 *
	 *  - John D. Dixon: Exact Solution of linear equations using p-adic expansions. Numerische Mathematik, 
	 *  volume 40, pages 137-141, 1982.
	 *  .
	 * \ingroup algorithms
	 * 
	 */


	/** \brief define the different return status of the p-adic based solver's computation. 
	 * 
	 * \ingroup padic
	 */
	enum SolverReturnStatus {
		SS_OK, SS_FAILED, SS_SINGULAR, SS_INCONSISTENT, SS_BAD_PRECONDITIONER
	};
    
	/** \brief  define the different strategy which can be used in the p-adic based solver.
	 *
	 * used to determine what level of solving should be done:
	 * - Monte Carlo: Try to solve if possible, but result is not guaranteed. 
	 *   In any case a 0 denominator should not be returned.
	 * - Las Vegas  : Result should be guaranteed correct.
	 * - Certified  : Additionally, provide certificates that the result returned is correct.
	 *              - if the return value is SS_INCONSISTENT, this means
	 *                   lastCertificate satisfies lC.A = 0, lC.b != 0
	 *              - if diophantine solving was called and the return value is SS_OK, this means
	 *                   lastCertificate satisfies den(lC.A) = 1, den(lC.b) = den(answer)
	 * .
	 * \ingroup padic
	 */
	enum SolverLevel {
		SL_MONTECARLO, SL_LASVEGAS, SL_CERTIFIED
	};    // note: code may assume that each level is 'stronger' than the previous one


	/** \brief interface for the different specialization of p-adic lifting based solvers.
	 *
	 * The following type are abstract in the implementation and can be change during the instanciation of the class:
	 * -  Ring: ring over which entries are defined
	 * -  Field: finite field for p-adic lifting
	 * -  RandomPrime: generator of random primes
	 * -  MethodTraits: type of subalgorithm to use in p-adic lifting (default is DixonTraits)
	 *
	 * \ingroup padic	 
	 */	
 	template<class Ring, class Field,class RandomPrime, class MethodTraits = DixonTraits>		
 	class RationalSolver {

	public:
		/** \brief Solve a linear system Ax=b over quotient field of a ring		 
		 *         giving a random solution if the system is singular and consistent.
		 *         giving the unique solution if the system is non-singular.
		 *
		 * @param num  , Vector of numerators of the solution
		 * @param den  , The common denominator. 1/den * num is the rational solution of Ax = b.
		 * @param A    , Matrix of linear system
		 * @param b    , Right-hand side of system
		 * @param maxPrimes , maximum number of moduli to try
		 *
		 * @return status of solution
		 */
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solve(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b,const bool, int maxPrimes = DEFAULT_MAXPRIMES) const;
    
		
		/** \brief  Solve a nonsingular linear system Ax=b over quotient field of a ring.
		 *          giving the unique solution of the system.
		 *
		 * @param num  , Vector of numerators of the solution
		 * @param den  , The common denominator. 1/den * num is the rational solution of Ax = b.
		 * @param A   , Matrix of linear system
		 * @param b   , Right-hand side of system
		 * @param maxPrimes , maximum number of moduli to try
		 *
		 * @return status of solution
		 */
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solveNonsingular(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, int maxPrimes = DEFAULT_MAXPRIMES) const;         
		
		/** \brief Solve a singular linear system Ax=b over quotient field of a ring.
		 *         giving a random solution if the system is singular and consistent.
		 *
		 * @param num  , Vector of numerators of the solution
		 * @param den  , The common denominator. 1/den * num is the rational solution of Ax = b.
		 * @param A   , Matrix of linear system
		 * @param b   , Right-hand side of system
		 * @param maxPrimes , maximum number of moduli to try
		 *
		 * @return status of solution
		 */	
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solveSingular(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, int maxPrimes = DEFAULT_MAXPRIMES) const;	

		
	};
	
	
	


#ifdef RSTIMING
	class WiedemannTimer {
	public: 
		mutable Timer ttSetup, ttRecon, ttGetDigit, ttGetDigitConvert, ttRingApply, ttRingOther;
		void clear() const {
			ttSetup.clear();
			ttRecon.clear();
			ttGetDigit.clear();
			ttGetDigitConvert.clear();
			ttRingOther.clear();
			ttRingApply.clear();
		}

		template<class RR, class LC>
		void update(RR& rr, LC& lc) const {
			ttSetup += lc.ttSetup;
			ttRecon += rr.ttRecon;
			ttGetDigit += lc.ttGetDigit;
			ttGetDigitConvert += lc.ttGetDigitConvert;
			ttRingOther += lc.ttRingOther;
			ttRingApply += lc.ttRingApply;
		}
	};
#endif


	/** \brief partial specialization of p-adic based solver with Wiedemann algorithm
	 *
	 *   See the following reference for details on this algorithm:
	 *   - Douglas H. Wiedemann: Solving sparse linear equations over finite fields. 
	 *   IEEE Transaction on Information Theory, 32(1), pages 54-62, 1986.
	 *
	 *   - Erich Kaltofen and B. David Saunders: On Wiedemann's method of solving sparse linear systems.
	 *   In Applied Algebra, Algebraic Algorithms and Error Correcting Codes - AAECC'91, volume 539 of Lecture Notes 
	 *   in Computer Sciences, pages 29-38, 1991.
	 *
	 */
	template<class Ring, class Field,class RandomPrime>		
	class RationalSolver<Ring, Field, RandomPrime, WiedemannTraits> {

	public: 
		typedef Ring                                 RingType;
		typedef typename Ring::Element                Integer;
		typedef typename Field::Element               Element;
		typedef typename RandomPrime::Prime_Type        Prime;
		typedef std::vector<Element>              FPolynomial;

	protected:
		Ring                    _R;
		RandomPrime      _genprime;
		mutable Prime       _prime;
		WiedemannTraits    _traits;
	 
#ifdef RSTIMING
		mutable Timer  tNonsingularSetup,   ttNonsingularSetup,
			tNonsingularMinPoly, ttNonsingularMinPoly,
			totalTimer;
		
		mutable WiedemannTimer   ttNonsingularSolve;
#endif
	public:

		/** Constructor
		 * @param r   , a Ring, set by default
		 * @param rp  , a RandomPrime generator, set by default		 
		 */
		RationalSolver (const Ring& r = Ring(), const RandomPrime& rp = RandomPrime(DEFAULT_PRIMESIZE), const WiedemannTraits& traits=WiedemannTraits()) : 
			_R(r), _genprime(rp), _traits(traits) {
			
			++_genprime; _prime=*_genprime;
#ifdef RSTIMING
			clearTimers();
#endif
		}
    
		/**  Constructor with a prime
		 * @param p   , a Prime
		 * @param r   , a Ring, set by default
		 * @param rp  , a RandomPrime generator, set by default		 
		 */
		RationalSolver (const Prime& p, const Ring& r = Ring(), const RandomPrime& rp = RandomPrime(DEFAULT_PRIMESIZE), 
				const WiedemannTraits& traits=WiedemannTraits()) : 
			_R(r), _genprime(rp), _prime(p), _traits(traits){
			
#ifdef RSTIMING
			clearTimers();
#endif
		}
    

		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solve(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b,const bool, int maxPrimes = DEFAULT_MAXPRIMES) const;
		
		
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solveNonsingular(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, int maxPrimes = DEFAULT_MAXPRIMES) const;         

		
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solveSingular(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, int maxPrimes = DEFAULT_MAXPRIMES) const;	


		template <class IMatrix, class FMatrix, class IVector>
		void sparseprecondition (const Field&, const IMatrix* , Compose< LambdaSparseMatrix<Ring>,Compose<IMatrix, LambdaSparseMatrix<Ring> > > *&, const FMatrix*, Compose<LambdaSparseMatrix<Field>,Compose<FMatrix,LambdaSparseMatrix<Field> > > *&, const IVector&, IVector&, LambdaSparseMatrix<Ring> *&, LambdaSparseMatrix<Ring> *&, LambdaSparseMatrix<Field> *&, LambdaSparseMatrix<Field> *&) const;

 
		/*
		  template <class IMatrix, class FMatrix, class IVector, class FVector>
		  void precondition (const Field&,
		  const IMatrix&,
		  BlackboxArchetype<IVector>*&,
		  const FMatrix*,
		  BlackboxArchetype<FVector>*&,
		  const IVector&,				   
		  IVector&,
		  BlackboxArchetype<IVector>*&,
		  BlackboxArchetype<IVector>*&) const; 
		*/
			
#ifdef RSTIMING	
		void clearTimers() const
		{
			ttNonsingularSetup.clear();
			ttNonsingularMinPoly.clear();
   		      
			ttNonsingularSolve.clear();
		}

	public:

		inline std::ostream& printTime(const Timer& timer, const char* title, std::ostream& os, const char* pref = "") const {
			if (&timer != &totalTimer)
				totalTimer += timer;
			if (timer.count() > 0) {
				os << pref << title;
				for (int i=strlen(title)+strlen(pref); i<28; i++) 
					os << ' ';
				return os << timer << std::endl;
			}
			else
				return os;
		}

		inline std::ostream& printWiedemannTime(const WiedemannTimer& timer, const char* title, std::ostream& os) const{
			if (timer.ttSetup.count() > 0) {
				printTime(timer.ttSetup, "Setup", os, title);
				printTime(timer.ttGetDigit, "Field Apply", os, title);
				printTime(timer.ttGetDigitConvert, "Ring-Field-Ring Convert", os, title);
				printTime(timer.ttRingApply, "Ring Apply", os, title);
				printTime(timer.ttRingOther, "Ring Other", os, title);
				printTime(timer.ttRecon, "Reconstruction", os, title);
			}
			return os;
		}

		std::ostream& reportTimes(std::ostream& os) const {
			totalTimer.clear();
			printTime(ttNonsingularSetup, "NonsingularSetup", os);
			printTime(ttNonsingularMinPoly, "NonsingularMinPoly", os);
			printWiedemannTime(ttNonsingularSolve, "NS ", os);
			printTime(totalTimer , "TOTAL", os);
			return os;
		}
#endif
	}; // end of specialization for the class RationalSover with Wiedemann traits




#ifdef RSTIMING
	class BlockWiedemannTimer {
	public: 
		mutable Timer ttSetup, ttRecon, ttGetDigit, ttGetDigitConvert, ttRingApply, ttRingOther, ttMinPoly;
		void clear() const {
			ttSetup.clear();
			ttRecon.clear();
			ttGetDigit.clear();
			ttGetDigitConvert.clear();
			ttRingOther.clear();
			ttRingApply.clear();
			ttMinPoly.clear();
		}

		template<class RR, class LC>
		void update(RR& rr, LC& lc) const {
			ttSetup += lc.ttSetup;
			ttRecon += rr.ttRecon;
			ttGetDigit += lc.ttGetDigit;
			ttGetDigitConvert += lc.ttGetDigitConvert;
			ttRingOther += lc.ttRingOther;
			ttRingApply += lc.ttRingApply;
			ttMinPoly += lc.ttMinPoly;
		}
	};
#endif


	/** \brief partial specialization of p-adic based solver with block Wiedemann algorithm
	 *
	 *   See the following reference for details on this algorithm:
	 *   - Douglas H. Wiedemann: Solving sparse linear equations over finite fields. 
	 *   IEEE Transaction on Information Theory, 32(1), pages 54-62, 1986.
	 *
	 *   - Don Coppersmith: Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm.
	 *   Mathematic of computation, 62(205), pages 335-350, 1994. 
	 *
	 *   - Erich Kaltofen and B. David Saunders: On Wiedemann's method of solving sparse linear systems.
	 *   In Applied Algebra, Algebraic Algorithms and Error Correcting Codes - AAECC'91, volume 539 of Lecture Notes 
	 *   in Computer Sciences, pages 29-38, 1991.
	 *
	 *
	 */

	template<class Ring, class Field,class RandomPrime>		
	class RationalSolver<Ring, Field, RandomPrime, BlockWiedemannTraits> {

	public: 
		typedef Ring                                 RingType;
		typedef typename Ring::Element                Integer;
		typedef typename Field::Element               Element;
		typedef typename RandomPrime::Prime_Type        Prime;
		typedef BlasMatrix<Element>               Coefficient;
		typedef std::vector<Element>              FPolynomial;
		typedef std::vector<Coefficient>     FBlockPolynomial;

	protected:
		Ring                         _R;
		RandomPrime           _genprime;
		mutable Prime            _prime;
		BlockWiedemannTraits    _traits;
	 
#ifdef RSTIMING
		mutable Timer  tNonsingularSetup,   ttNonsingularSetup,
			tNonsingularBlockMinPoly, ttNonsingularBlockMinPoly,
			totalTimer;
		
		mutable BlockWiedemannTimer   ttNonsingularSolve;
#endif
	public:

		/* Constructor
		 * @param r   , a Ring, set by default
		 * @param rp  , a RandomPrime generator, set by default		 
		 */
		RationalSolver (const Ring& r = Ring(), const RandomPrime& rp = RandomPrime(DEFAULT_PRIMESIZE), const BlockWiedemannTraits& traits=BlockWiedemannTraits()) : 
			_R(r), _genprime(rp), _traits(traits){
			
			++_genprime; _prime=*_genprime;
#ifdef RSTIMING
			clearTimers();
#endif
		}
    
		/* Constructor with a prime
		 * @param p   , a Prime
		 * @param r   , a Ring, set by default
		 * @param rp  , a RandomPrime generator, set by default		 
		 */
		RationalSolver (const Prime& p, const Ring& r = Ring(), const RandomPrime& rp = RandomPrime(DEFAULT_PRIMESIZE), 
				const BlockWiedemannTraits& traits=BlockWiedemannTraits()) : 
			_R(r), _genprime(rp), _prime(p), _traits(traits){
			
#ifdef RSTIMING
			clearTimers();
#endif
		}
    
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solve(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b,const bool, int maxPrimes = DEFAULT_MAXPRIMES) const;
    
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solveNonsingular(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, int maxPrimes = DEFAULT_MAXPRIMES) const;         


		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solveSingular(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, int maxPrimes = DEFAULT_MAXPRIMES) const;	


			
#ifdef RSTIMING	
		void clearTimers() const
		{
			ttNonsingularSetup.clear();
			ttNonsingularBlockMinPoly.clear();
   		      
			ttNonsingularSolve.clear();
		}

	public:

		inline std::ostream& printTime(const Timer& timer, const char* title, std::ostream& os, const char* pref = "") const {
			if (&timer != &totalTimer)
				totalTimer += timer;
			if (timer.count() > 0) {
				os << pref << title;
				for (int i=strlen(title)+strlen(pref); i<28; i++) 
					os << ' ';
				return os << timer << std::endl;
			}
			else
				return os;
		}

		inline std::ostream& printBlockWiedemannTime(const BlockWiedemannTimer& timer, const char* title, std::ostream& os) const{
			if (timer.ttSetup.count() > 0) {
				printTime(timer.ttSetup, "Setup", os, title);
				printTime(timer.ttGetDigit, "Field Apply", os, title);
				printTime(timer.ttGetDigitConvert, "Ring-Field-Ring Convert", os, title);
				printTime(timer.ttRingApply, "Ring Apply", os, title);
				printTime(timer.ttRingOther, "Ring Other", os, title);
				printTime(timer.ttRecon, "Reconstruction", os, title);
			}
			return os;
		}

		std::ostream& reportTimes(std::ostream& os) const {
			totalTimer.clear();
			printTime(ttNonsingularSetup, "NonsingularSetup", os);
			printTime(ttNonsingularBlockMinPoly, "NonsingularMinPoly", os);
			printBlockWiedemannTime(ttNonsingularSolve, "NS ", os);
			printTime(totalTimer , "TOTAL", os);
			std::cout<<"MinPoly computation        :"<<ttNonsingularSolve.ttMinPoly<<std::endl;
			return os;
		}
#endif
	}; // end of specialization for the class RationalSover with BlockWiedemann traits






#ifdef RSTIMING
	class DixonTimer {
	public: 
		mutable Timer ttSetup, ttRecon, ttGetDigit, ttGetDigitConvert, ttRingApply, ttRingOther;
		mutable int rec_elt;
		void clear() const {
			ttSetup.clear();
			ttRecon.clear();
			ttGetDigit.clear();
			ttGetDigitConvert.clear();
			ttRingOther.clear();
			ttRingApply.clear();
			rec_elt=0;
		}

		template<class RR, class LC>
		void update(RR& rr, LC& lc) const {
			ttSetup += lc.ttSetup;
			ttRecon += rr.ttRecon;
			rec_elt += rr._num_rec;
			ttGetDigit += lc.ttGetDigit;
			ttGetDigitConvert += lc.ttGetDigitConvert;
			ttRingOther += lc.ttRingOther;
			ttRingApply += lc.ttRingApply;
		}
	};
#endif


	/** \brief partial specialization of p-adic based solver with Dixon algorithm
	 *
	 *   See the following reference for details on this algorithm:
	 * 
	 *  - John D. Dixon: Exact Solution of linear equations using p-adic expansions. Numerische Mathematik, 
	 *  volume 40, pages 137-141, 1982.
	 *
	 */

	template<class Ring, class Field,class RandomPrime>		
	class RationalSolver<Ring, Field, RandomPrime, DixonTraits> {
	
	public:          
		
		typedef Ring                                 RingType;
		typedef typename Ring::Element               Integer;
		typedef typename Field::Element              Element;
		typedef typename RandomPrime::Prime_Type     Prime;

		// polymorphic 'certificate' generated when level >= SL_CERTIFIED
		// certificate of inconsistency when any solving routine returns SS_INCONSISTENT
		// certificate of minimal denominator when findRandomSolutionAndCertificate is called & return is SS_OK
		mutable VectorFraction<Ring>                 lastCertificate;     

		//next 2 fields generated only by findRandomSolutionAndCertificate, when return is SS_OK
		mutable Integer                              lastZBNumer;               //filled in if level >= SL_CERTIFIED
		mutable Integer                              lastCertifiedDenFactor;    //filled in if level >= SL_LASVEGAS
		//note: lastCertificate * b = lastZBNumer / lastCertifiedDenFactor, in lowest form
		
	protected:
		
		mutable RandomPrime                     _genprime;
		mutable Prime                   _prime;
		Ring                            _R; 
#ifdef RSTIMING
		mutable Timer       
		tSetup,           ttSetup,
			tLQUP,            ttLQUP,
			tFastInvert,      ttFastInvert,        //only done in deterministic or inconsistent
			tCheckConsistency,ttCheckConsistency,        //includes lifting the certificate
			tMakeConditioner, ttMakeConditioner,
			tInvertBP,        ttInvertBP,              //only done in random
			tCheckAnswer,     ttCheckAnswer,
			tCertSetup,       ttCertSetup,        //remaining 3 only done when makeMinDenomCert = true
			tCertMaking,      ttCertMaking,

			tNonsingularSetup,ttNonsingularSetup,
			tNonsingularInv,  ttNonsingularInv,

			totalTimer;
		
		mutable DixonTimer
		ttConsistencySolve, ttSystemSolve, ttCertSolve, ttNonsingularSolve;
#endif
		
	public:
		
		/** Constructor
		 * @param r   , a Ring, set by default
		 * @param rp  , a RandomPrime generator, set by default		 
		 */
		RationalSolver (const Ring& r = Ring(), const RandomPrime& rp = RandomPrime(DEFAULT_PRIMESIZE)) : 
			lastCertificate(r, 0), _genprime(rp), _R(r) 
		{
			++_genprime; _prime=*_genprime; 
#ifdef RSTIMING
			clearTimers();
#endif
		}
    
		
		/** Constructor, trying the prime p first
		 * @param p   , a Prime
		 * @param r   , a Ring, set by default
		 * @param rp  , a RandomPrime generator, set by default		 
		 */
		RationalSolver (const Prime& p, const Ring& r = Ring(), const RandomPrime& rp = RandomPrime(DEFAULT_PRIMESIZE)) : 
			lastCertificate(r, 0), _genprime(rp), _prime(p), _R(r) 
		{
#ifdef RSTIMING
			clearTimers();
#endif
		}
    
		
		/** Solve a linear system Ax=b over quotient field of a ring
		 * 
		 * @param num  , Vector of numerators of the solution
		 * @param den  , The common denominator. 1/den * num is the rational solution of Ax = b.
		 * @param A        , Matrix of linear system
		 * @param b        , Right-hand side of system
		 * @param maxPrimes, maximum number of moduli to try
		 * @param level    , level of certification to be used
		 *
		 * @return status of solution. if (return != SS_FAILED), and (level >= SL_LASVEGAS), solution is guaranteed correct.
		 *   SS_FAILED - all primes used were bad
		 *   SS_OK - solution found. 
		 *   SS_INCONSISTENT - system appreared inconsistent. certificate is in lastCertificate if (level >= SL_CERTIFIED)
		 */
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solve(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, const bool = false, 
					 const int maxPrimes = DEFAULT_MAXPRIMES, const SolverLevel level = SL_DEFAULT) const;
		
		/** overload so that the bool 'oldMatrix' argument is not accidentally set to true */
		template <class IMatrix, class Vector1, class Vector2>	
		SolverReturnStatus solve(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, const int maxPrimes, 
					 const SolverLevel level = SL_DEFAULT) const {
			return solve (num, den, A, b, false, maxPrimes, level);
		}

		/** Solve a nonsingular, square linear system Ax=b over quotient field of a ring
		 * 
		 * @param num  , Vector of numerators of the solution
		 * @param den  , The common denominator. 1/den * num is the rational solution of Ax = b.
		 * @param A        , Matrix of linear system (it must be square)
		 * @param b        , Right-hand side of system
		 * @param maxPrimes, maximum number of moduli to try
		 *
		 * @return status of solution. 
		 *   SS_FAILED - all primes used were bad
		 *   SS_OK - solution found, guaranteed correct. 
		 *   SS_SINGULAR - system appreared singular mod all primes. 
		 */
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solveNonsingular(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, bool = false, 
						    int maxPrimes = DEFAULT_MAXPRIMES) const;

		/** Solve a general rectangular linear system Ax=b over quotient field of a ring. 
		 *  If A is known to be square and nonsingular, calling solveNonsingular is more efficient.
		 * 
		 * @param num  , Vector of numerators of the solution
		 * @param den  , The common denominator. 1/den * num is the rational solution of Ax = b.
		 * @param A        , Matrix of linear system
		 * @param b        , Right-hand side of system
		 * @param maxPrimes, maximum number of moduli to try
		 * @param level    , level of certification to be used
		 *
		 * @return status of solution. if (return != SS_FAILED), and (level >= SL_LASVEGAS), solution is guaranteed correct.
		 *   SS_FAILED - all primes used were bad
		 *   SS_OK - solution found. 
		 *   SS_INCONSISTENT - system appreared inconsistent. certificate is in lastCertificate if (level >= SL_CERTIFIED)
		 */
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solveSingular(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, 
						 int maxPrimes = DEFAULT_MAXPRIMES, const SolverLevel level = SL_DEFAULT) const;

		/** Find a random solution of the general linear system Ax=b over quotient field of a ring.
		 * 
		 * @param num  , Vector of numerators of the solution
		 * @param den  , The common denominator. 1/den * num is the rational solution of Ax = b.
		 * @param A        , Matrix of linear system
		 * @param b        , Right-hand side of system
		 * @param maxPrimes, maximum number of moduli to try
		 * @param level    , level of certification to be used
		 *
		 * @return status of solution. if (return != SS_FAILED), and (level >= SL_LASVEGAS), solution is guaranteed correct.
		 *   SS_FAILED - all primes used were bad
		 *   SS_OK - solution found. 
		 *   SS_INCONSISTENT - system appreared inconsistent. certificate is in lastCertificate if (level >= SL_CERTIFIED)
		 */
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus findRandomSolution(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, 
						      int maxPrimes = DEFAULT_MAXPRIMES, const SolverLevel level = SL_DEFAULT) const;
		
		/** Big solving routine to perform random solving and certificate generation.
		 * Same arguments and return as findRandomSolution, except
		 *
		 * @param num  , Vector of numerators of the solution
		 * @param den  , The common denominator. 1/den * num is the rational solution of Ax = b.
		 * @param randomSolution,  parameter to determine whether to randomize or not (since solveSingular calls this function as well)
		 * @param makeMinDenomCert,  determines whether a partial certificate for the minimal denominator of a rational solution is made
		 *
		 * When (randomSolution == true && makeMinDenomCert == true), 
		 *   If (level == SL_MONTECARLO) this function has the same effect as calling findRandomSolution.
		 *   If (level >= SL_LASVEGAS && return == SS_OK), lastCertifiedDenFactor contains a certified factor of the min-solution's denominator.
		 *   If (level >= SL_CERTIFIED && return == SS_OK), lastZBNumer and lastCertificate are updated as well.
		 *
		 */
		template <class IMatrix, class Vector1, class Vector2>	
		SolverReturnStatus monolithicSolve (Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, 
						    bool makeMinDenomCert, bool randomSolution,
						    int maxPrimes = DEFAULT_MAXPRIMES, const SolverLevel level = SL_DEFAULT) const;

		Ring getRing() const {return _R;}

		void chooseNewPrime() const { ++_genprime; _prime = *_genprime; }

#ifdef RSTIMING
		void clearTimers() const
		{
			ttSetup.clear();
			ttLQUP.clear();
			ttFastInvert.clear();
			ttCheckConsistency.clear();
			ttMakeConditioner.clear();
			ttInvertBP.clear();
			ttCheckAnswer.clear();
			ttCertSetup.clear();
			ttCertMaking.clear();
			ttNonsingularSetup.clear();
			ttNonsingularInv.clear();

   		        ttConsistencySolve.clear();
			ttSystemSolve.clear();
			ttCertSolve.clear();
			ttNonsingularSolve.clear();
		}

	public:

		inline std::ostream& printTime(const Timer& timer, const char* title, std::ostream& os, const char* pref = "") const {
			if (&timer != &totalTimer)
				totalTimer += timer;
			if (timer.count() > 0) {
				os << pref << title;
				for (int i=strlen(title)+strlen(pref); i<28; i++) 
					os << ' ';
				return os << timer << std::endl;
			}
			else
				return os;
		}

		inline std::ostream& printDixonTime(const DixonTimer& timer, const char* title, std::ostream& os) const{
			if (timer.ttSetup.count() > 0) {
				printTime(timer.ttSetup, "Setup", os, title);
				printTime(timer.ttGetDigit, "Field Apply", os, title);
				printTime(timer.ttGetDigitConvert, "Ring-Field-Ring Convert", os, title);
				printTime(timer.ttRingApply, "Ring Apply", os, title);
				printTime(timer.ttRingOther, "Ring Other", os, title);
				printTime(timer.ttRecon, "Reconstruction", os, title);
				os<<" number of elt recontructed: "<<timer.rec_elt<<std::endl;
			}
			return os;
		}

		std::ostream& reportTimes(std::ostream& os) const {
			totalTimer.clear();
			printTime(ttNonsingularSetup, "NonsingularSetup", os);
			printTime(ttNonsingularInv, "NonsingularInv", os);
			printDixonTime(ttNonsingularSolve, "NS ", os);
			printTime(ttSetup , "Setup", os);
			printTime(ttLQUP , "LQUP", os);
			printTime(ttFastInvert , "FastInvert", os);
			printTime(ttCheckConsistency , "CheckConsistency", os);
			printDixonTime(ttConsistencySolve, "INC ", os);
			printTime(ttMakeConditioner , "MakeConditioner", os);
			printTime(ttInvertBP , "InvertBP", os);
			printDixonTime(ttSystemSolve, "SYS ", os);
			printTime(ttCheckAnswer , "CheckAnswer", os);
			printTime(ttCertSetup , "CertSetup", os);
			printDixonTime(ttCertSolve, "CER ", os);
			printTime(ttCertMaking , "CertMaking", os);
			printTime(totalTimer , "TOTAL", os);
			return os;
		}
#endif
		
	}; // end of specialization for the class RationalSover with Dixon traits




	/** \brief partial specialization of p-adic based solver with a hybrid Numeric/Symbolic computation
	 *
	 *   See the following reference for details on this implementation:
	 *   - Zhendong Wan: Exactly solve integer linear systems using numerical methods.
	 *   Submitted to Journal of Symbolic Computation, 2004.
	 *
	 */
	
	//template argument Field and RandomPrime are not used.
	//Keep it just for interface consistency.
	template <class Ring, class Field, class RandomPrime>
	class RationalSolver<Ring, Field, RandomPrime, NumericalTraits> {

	protected:
		Ring r;

	public:
		typedef typename Ring::Element Integer;

		RationalSolver(const Ring& _r = Ring()) : r(_r) {}


#if  __LINBOX_HAVE_DGETRF && __LINBOX_HAVE_DGETRI
		template <class IMatrix, class OutVector, class InVector>
		SolverReturnStatus solve(OutVector& num, Integer& den, const IMatrix& M, const InVector& b) const {

			if(M. rowdim() != M. coldim()) 
				return SS_FAILED;
	
			linbox_check((b.size() == M.rowdim()) && (num. size() == M.coldim()));
			int n = M. rowdim();
			integer mentry, bnorm; mentry = 1; bnorm = 1;
			typename InVector::const_iterator b_p; 
			Integer tmp_I; integer tmp;
			typename IMatrix::ConstRawIterator raw_p;
			for (raw_p = M. rawBegin(); raw_p != M. rawEnd(); ++ raw_p) {
				r. convert (tmp, *raw_p);
				tmp = abs (tmp);
				if (tmp > mentry) mentry = tmp;
			}

			for (b_p = b. begin(); b_p != b.  end(); ++ b_p) {
				r. init (tmp_I, *b_p);
				r. convert (tmp, tmp_I);
				tmp = abs (tmp);
				if (tmp > bnorm) bnorm = tmp;
			}
				
			integer threshold; threshold = 1; threshold <<= 50;

			if ((mentry > threshold) || (bnorm > threshold)) return SS_FAILED;
			else {

				double* DM = new double [n * n];
				double* Db = new double [n];
				double* DM_p, *Db_p;
				typename IMatrix::ConstRawIterator raw_p;
				for (raw_p = M. rawBegin(), DM_p = DM; raw_p != M. rawEnd(); ++ raw_p, ++ DM_p) {
					r. convert (tmp, *raw_p);
					*DM_p = (double) tmp;
				}

				for (b_p = b. begin(), Db_p = Db; b_p != b. begin() + n; ++ b_p, ++ Db_p) {
					r. init (tmp_I, *b_p);
					r. convert (tmp, tmp_I);
					*Db_p = (double) tmp;
				}

				integer* numx = new integer[n];
				integer denx;
				int ret;
				ret = cblas_rsol (n, DM, numx, denx, Db);
				delete[] DM; delete[] Db; 

				if (ret == 0){
					r. init (den, denx);
					typename OutVector::iterator num_p;
					integer* numx_p = numx;
					for (num_p = num. begin(); num_p != num. end(); ++ num_p, ++ numx_p)
						r. init (*num_p, *numx_p);
				}
				delete[] numx;

				if (ret == 0) return SS_OK;
				else return SS_FAILED;
			}

		}
#else
		template <class IMatrix, class OutVector, class InVector>
		SolverReturnStatus solve(OutVector& num, Integer& den, const IMatrix& M, const InVector& b) const {
//                     std::cerr<< "dgetrf or dgetri missing" << std::endl;
                    return SS_FAILED;
                }
#endif

	private:
		//print out a vector
		template <class Elt>
		inline static int printvec (const Elt* v, int n);
		/** Compute the OO-norm of a mtrix */ 
		inline static double cblas_dOOnorm(const double* M, int m, int n);
		/** compute the maximam of absolute value of an array*/
		inline static double cblas_dmax (const int N, const double* a, const int inc);
		/* apply  y <- Ax */
		inline static int cblas_dapply (int m, int n, const double* A, const double* x, double* y);
		inline static int cblas_mpzapply (int m, int n, const double* A, const integer* x, integer* y);
		//update the numerator; num = num * 2^shift + d;
		inline static int update_num (integer* num, int n, const double* d, int shift);
		//update r = r * shift - M d, where norm (r) < 2^32;
		inline static int update_r_int (double* r, int n, const double* M, const double* d, int shift);
		//update r = r * shift - M d, where 2^32 <= norm (r) < 2^53
		inline static int update_r_ll (double* r, int n, const double* M, const double* d, int shift);
		/** compute  the hadamard bound*/
		inline static int cblas_hbound (integer& b, int m, int n, const double* M);

#if __LINBOX_HAVE_DGETRF && __LINBOX_HAVE_DGETRI
		// compute the inverse of a general matrix
		inline static int cblas_dgeinv(double* M, int n);
		/* solve Ax = b 
		 * A, the integer matrix
		 * b, integer rhs
		 * Return value
		 * 0, ok.
		 * 1, the matrix is not invertible in floating point operations.
		 * 2, the matrix is not well conditioned.
		 * 3, incorrect answer, possible ill-conditioned.
		 */
		inline static int cblas_rsol (int n, const double* M, integer* numx, integer& denx, double* b);
#endif
	};


	template<class Ring, class Field,class RandomPrime>		
 	class RationalSolver<Ring, Field, RandomPrime, BlockHankelTraits> 
	{
	public:
		typedef Ring                                 RingType;
		typedef typename Ring::Element               Integer;
		typedef typename Field::Element              Element;
		typedef typename RandomPrime::Prime_Type     Prime;
	
	protected:
		RandomPrime                     _genprime;
		mutable Prime                   _prime;
		Ring                            _R; 

	public:
		

		/** Constructor
		 * @param r   , a Ring, set by default
		 * @param rp  , a RandomPrime generator, set by default		 
		 */
		RationalSolver (const Ring& r = Ring(), const RandomPrime& rp = RandomPrime(DEFAULT_PRIMESIZE)) : 
			 _genprime(rp), _R(r) 
		{
			_prime=_genprime.randomPrime(); 
		}
    
		
		/** Constructor, trying the prime p first
		 * @param p   , a Prime
		 * @param r   , a Ring, set by default
		 * @param rp  , a RandomPrime generator, set by default		 
		 */
		RationalSolver (const Prime& p, const Ring& r = Ring(), const RandomPrime& rp = RandomPrime(DEFAULT_PRIMESIZE)) : 
			_genprime(rp), _prime(p), _R(r) {}


		// solve non singular system
		template<class IMatrix, class Vector1, class Vector2>
		SolverReturnStatus solveNonsingular(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, size_t blocksize, int maxPrimes = DEFAULT_MAXPRIMES) const;         				
	};

}

#include <linbox/algorithms/rational-solver.inl>

#endif