This file is indexed.

/usr/include/linbox/algorithms/rational-solver.inl is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/algorithms/rational-solver.inl
 * Copyright (C) 2004 Pascal Giorgi
 *
 * Written by Pascal Giorgi  <pascal.giorgi@ens-lyon.fr>
 * Modified by David Pritchard  <daveagp@mit.edu>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

#ifndef __LINBOX_RATIONAL_SOLVER_INL
#define __LINBOX_RATIONAL_SOLVER_INL



#include <linbox/blackbox/dense.h>
#include <linbox/blackbox/sparse.h>
#include <linbox/blackbox/lambda-sparse.h>
#include <linbox/blackbox/lambda-sparse.h>
#include <linbox/blackbox/transpose.h>
#include <linbox/blackbox/diagonal.h>
#include <linbox/blackbox/compose.h>
#include <linbox/algorithms/lifting-container.h>
#include <linbox/algorithms/rational-reconstruction.h>
#include <linbox/algorithms/matrix-inverse.h>
#include <linbox/algorithms/matrix-hom.h>
#include <linbox/algorithms/blackbox-container.h>
#include <linbox/algorithms/massey-domain.h>
#include <linbox/algorithms/blackbox-block-container.h>
#include <linbox/algorithms/block-massey-domain.h>
#include <linbox/algorithms/vector-fraction.h>
#include <linbox/ffpack/ffpack.h>
#include <linbox/fflas/fflas.h>
#include <linbox/solutions/methods.h>
#include <linbox/util/debug.h>
#include <linbox/linbox-config.h>
#include <linbox/field/multimod-field.h>
#include <linbox/blackbox/block-hankel-inverse.h>



#ifdef __LINBOX_BLAS_AVAILABLE
#include <linbox/config-blas.h>
#include <linbox/blackbox/blas-blackbox.h>
#include <linbox/matrix/blas-matrix.h>
#include <linbox/algorithms/blas-domain.h>
#include <linbox/matrix/factorized-matrix.h>
#include <linbox/util/timer.h>
#endif

//#define DEBUG_DIXON 
//#define DEBUG_INC
//#define SKIP_NONSINGULAR

namespace LinBox {
	
	template <class Prime>
	inline bool checkBlasPrime(const Prime p) {
		return p < Prime(67108863);
	}

	template<>
	inline bool checkBlasPrime(const std::vector<integer> p){
		bool tmp=true;
		for (size_t i=0;i<p.size();++i)
			if  (p[i] >= integer(67108863)) {tmp=false;break;}
		
		return tmp;
	}


	// SPECIALIZATION FOR WIEDEMANN 	

	// note: if Vector1 != Vector2 compilation of solve or solveSingluar will fail (via an invalid call to sparseprecondition)!
	// maybe they should not be templated separately, or sparseprecondition should be rewritten

	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,WiedemannTraits>::solve (Vector1& num, Integer& den,
											  const IMatrix& A,
											  const Vector2& b,
											  const bool old=false,
											  int maxPrimes) const {
		SolverReturnStatus status=SS_FAILED;

		switch (A.rowdim() == A.coldim() ? solveNonsingular(num, den, A,b) : SS_SINGULAR) {

		case SS_OK:
			status=SS_OK;
			break;

		case SS_SINGULAR:
			std::cerr<<"switching to singular\n";
			status=solveSingular(num, den,A,b);
			break;

		case SS_FAILED:			
			break;

		default:
			throw LinboxError ("Bad return value from solveNonsingular");
			
		}

		return status;
	}

	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,WiedemannTraits>::solveNonsingular (Vector1& num, Integer& den,
												     const IMatrix& A,
												     const Vector2& b,
												     int maxPrimes) const {
		// checking if matrix is square
		linbox_check(A.rowdim() == A.coldim());
		
		// checking size of system
		linbox_check(A.rowdim() == b.size());



		SparseMatrix<Field> *Ap;		
		FPolynomial MinPoly;
		unsigned long  deg;
		unsigned long issingular = SINGULARITY_THRESHOLD; 			
		Field *F=NULL;
		Prime prime = _prime;
		do {
#ifdef RSTIMING
			tNonsingularSetup.clear();
			tNonsingularSetup.start();
#endif			
			_prime = prime;
			if (F != NULL) delete F;
			F=new Field(prime);				
			MatrixHom::map (Ap, A, *F);
			typename Field::RandIter random(*F);
			BlackboxContainer<Field,SparseMatrix<Field> > Sequence(Ap,*F,random);
			MasseyDomain<Field,BlackboxContainer<Field,SparseMatrix<Field> > > MD(&Sequence);
#ifdef RSTIMING
			tNonsingularSetup.stop();
			ttNonsingularSetup+=tNonsingularSetup;
			tNonsingularMinPoly.clear();
			tNonsingularMinPoly.start();
#endif			
			MD.minpoly(MinPoly,deg);
#ifdef RSTIMING
			tNonsingularMinPoly.stop();
			ttNonsingularMinPoly+=tNonsingularMinPoly;
#endif
			prime = _genprime.randomPrime();
		}
		while(F->isZero(MinPoly.front()) && --issingular );			
				

		if (!issingular){	
			std::cerr<<"The Matrix is singular\n";
			delete Ap;
			return SS_SINGULAR;
		}			
		else {
 			//std::cerr<<"A:\n";
			//A.write(std::cerr);
 			//std::cerr<<"A mod p:\n";
 			//Ap->write(std::cerr);
			//Ring r;
			//VectorDomain<Ring> VD(r);
			//std::cerr<<"b:\n";		
			//VD.write(std::cerr,b)<<std::endl;
			//std::cerr<<"prime: "<<_prime<<std::endl;
			
			//std::cerr<<"non singular\n";

			//CSRSparseMatrix<Field> csr_Ap(*F,*Ap);

			//typedef CSRSparseMatrix<Field> FMatrix;
			typedef SparseMatrix<Field> FMatrix;

			typedef WiedemannLiftingContainer<Ring, Field, IMatrix, FMatrix, FPolynomial> LiftingContainer;
			
			LiftingContainer lc(_R, *F, A, *Ap, MinPoly, b,_prime);
			
			RationalReconstruction<LiftingContainer> re(lc);
			
			re.getRational(num, den, 0);
#ifdef RSTIMING
			ttNonsingularSolve.update(re, lc);
#endif
			return SS_OK;
		}
	}       

	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,WiedemannTraits>::solveSingular (Vector1& num, Integer& den,
												  const IMatrix& A,
												  const Vector2& b, 
												  int maxPrimes) const {
		std::cerr<<"in singular solver\n";

		typedef std::vector<typename Field::Element> FVector;
		typedef std::vector<typename Ring::Element>  IVector;
		typedef SparseMatrix<Field>                  FMatrix;

		// checking size of system
		linbox_check(A.rowdim() == b.size());		

		typedef LambdaSparseMatrix<Ring>  IPreconditioner;
		typedef LambdaSparseMatrix<Field> FPreconditioner;

		typedef Compose<IPreconditioner,Compose<IMatrix,IPreconditioner> > IPrecondMatrix;
		typedef Compose<FPreconditioner,Compose<FMatrix,FPreconditioner> > FPrecondMatrix;

		FMatrix               *Ap;			
		IPreconditioner *P     =NULL;
		IPreconditioner *Q     =NULL;
		FPreconditioner *Pmodp =NULL;
		FPreconditioner *Qmodp =NULL;
		IPrecondMatrix  *PAQ   =NULL;
		FPrecondMatrix  *PApQ  =NULL;				
		IVector Pb;


		FPolynomial MinPoly;		
		unsigned long  deg;
		unsigned long badprecondition = BAD_PRECONTITIONER_THRESHOLD;
		Field *F;
		Prime prime = _prime;
		typename Field::Element tmp;
		do {
			if (PApQ != NULL) {
				delete P;
				delete Q;
				delete PApQ;
				delete PAQ;
			}
			_prime = prime;
			F=new Field(prime);//std::cerr<<"here\n";				
			MatrixHom::map (Ap, A, *F);//std::cerr<<"after\n";
			sparseprecondition (*F,&A,PAQ,Ap,PApQ,b,Pb,P,Q,Pmodp,Qmodp);
			typename Field::RandIter random(*F);
			BlackboxContainer<Field,FPrecondMatrix> Sequence(PApQ,*F,random);
			MasseyDomain<Field,BlackboxContainer<Field,FPrecondMatrix> > MD(&Sequence);
			
			MD.minpoly(MinPoly,deg); 
			//MinPoly.resize(3);MinPoly[0]=1;MinPoly[1]=2;MinPoly[2]=1;
			prime = _genprime.randomPrime();			
			F->add(tmp,MinPoly.at(1),MinPoly.front());
		}
		while(((F->isZero(tmp) || MinPoly.size() <=2) && --badprecondition ));
		std::cerr<<"minpoly found with size: "<<MinPoly.size()<<std::endl;
		for (size_t i=0;i<MinPoly.size();i++)
			std::cerr<<MinPoly[i]<<"*x^"<<i<<"+";
		std::cerr<<std::endl;

		std::cerr<<"prime is: "<<_prime<<std::endl;
		if (!badprecondition){
			std::cerr<<"Bad Preconditionner\n";
		
			delete Ap;
			if (PAQ  != NULL) delete PAQ;
			if (PApQ != NULL) delete PApQ;	
			if (P    != NULL) delete P;
			if (Q    != NULL) delete Q;

			return SS_BAD_PRECONDITIONER;
		}				      		      				
		else {	
			
			MinPoly.erase(MinPoly.begin());
			
			typedef WiedemannLiftingContainer<Ring, Field, IPrecondMatrix, FPrecondMatrix, FPolynomial> LiftingContainer;
			std::cerr<<"before lc\n";
			LiftingContainer lc(_R, *F, *PAQ, *PApQ, MinPoly, Pb, _prime);
			std::cerr<<"constructing lifting container of length: "<<lc.length()<<std::endl;
			
			RationalReconstruction<LiftingContainer> re(lc,_R,2);
			
			re.getRational(num, den, 0); 


			if (Q    != NULL) {

				/*
				  typename Ring::Element lden;
				  _R. init (lden, 1);
				  typename Vector1::iterator p;		
				  for (p = answer.begin(); p != answer.end(); ++ p)
				  _R. lcm (lden, lden, p->second);

				*/

				IVector Qx(num.size());

				/*
				  typename IVector::iterator p_x;
						
				  for (p = answer.begin(), p_x = x. begin(); p != answer.end(); ++ p, ++ p_x) {					
				  _R. mul (*p_x, p->first, lden);					
				  _R. divin (*p_x, p->second);					
				  }
				*/

				Q->apply(Qx, num);
				/*
				  for (p=answer.begin(),p_x=Qx.begin(); p != answer.end();++p,++p_x){
				  p->first=*p_x;
				  p->second=lden;
				  }					
				*/
				num = Qx;
			}


			delete Ap;
			if (PAQ  != NULL) delete PAQ;
			if (PApQ != NULL) delete PApQ;	
			if (P    != NULL) delete P;
			if (Q    != NULL) delete Q;
			
			return SS_OK;
		}
	}       


	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class FMatrix, class IVector>
	void RationalSolver<Ring,Field,RandomPrime,WiedemannTraits>::sparseprecondition (const Field& F,
											 const IMatrix *A,
											 Compose<LambdaSparseMatrix<Ring>,Compose<IMatrix,LambdaSparseMatrix<Ring> > > *&PAQ,
											 const FMatrix *Ap,
											 Compose<LambdaSparseMatrix<Field>,Compose<FMatrix,LambdaSparseMatrix<Field> > > *&PApQ,
											 const IVector& b,
											 IVector& Pb,
											 LambdaSparseMatrix<Ring> *&P,
											 LambdaSparseMatrix<Ring> *&Q,
											 LambdaSparseMatrix<Field> *&Pmodp,
											 LambdaSparseMatrix<Field> *&Qmodp) const
	{
		// 		std::cerr<<"A:\n";
		// 		A->write(std::cerr);
		// 		std::cerr<<"A mod p:\n";
		// 		Ap->write(std::cerr);
		VectorDomain<Ring> VD(_R);
		// 		std::cerr<<"b:\n";		
		// 		VD.write(std::cerr,b)<<std::endl;
		

		commentator.start ("Constructing sparse preconditioner");
		typedef LambdaSparseMatrix<Ring>  IPreconditioner;
		typedef LambdaSparseMatrix<Field> FPreconditioner;

		size_t min_dim = A->coldim() < A->rowdim() ? A->coldim() : A->rowdim();
		
		P = new  IPreconditioner(_R,min_dim,A->rowdim(),2,3.);       
		// 		std::cerr<<"P:\n";
		// 		P->write(std::cerr);
		
		Q = new  IPreconditioner(_R,A->coldim(),min_dim,2,3.);
		// 		std::cerr<<"Q:\n";
		// 		Q->write(std::cerr);

		Compose<IMatrix,IPreconditioner> *AQ;
		AQ = new Compose<IMatrix,IPreconditioner> (A,Q);

		PAQ = new Compose<IPreconditioner, Compose<IMatrix,IPreconditioner> > (P,AQ);		;
		Pb.resize(min_dim);
		P->apply(Pb,b);
		// 		std::cerr<<"Pb:\n";
		// 		VD.write(std::cerr,Pb)<<std::endl;

		Pmodp = new FPreconditioner(F,*P);       
		std::cerr<<"P mod p completed\n";
		Qmodp = new FPreconditioner(F,*Q);
		std::cerr<<"Q mod p completed\n";

		Compose<FMatrix,FPreconditioner> *ApQ;
		ApQ = new Compose<FMatrix,FPreconditioner> (Ap,Qmodp);
		
		PApQ = new Compose<FPreconditioner, Compose<FMatrix,FPreconditioner> > (Pmodp, ApQ);
		std::cerr<<"Preconditioning done\n";
		commentator.stop ("done");
		
	}
											  

	/*
	  template <class Ring, class Field, class RandomPrime>
	  template <class IMatrix, class FMatrix, class IVector,class FVector>
	  void RationalSolver<Ring,Field,RandomPrime,WiedemannTraits>::precondition (const Field&                          F,
	  const IMatrix&                        A,
	  BlackboxArchetype<IVector>        *&PAQ,
	  const FMatrix                       *Ap,
	  BlackboxArchetype<FVector>       *&PApQ,
	  const IVector                        &b,
	  IVector                             &Pb,
	  BlackboxArchetype<IVector>          *&P,
	  BlackboxArchetype<IVector>          *&Q) const
	  {
	  switch (_traits.preconditioner() ) {
			
	  case WiedemannTraits::BUTTERFLY:
	  commentator.report (Commentator::LEVEL_IMPORTANT, INTERNAL_ERROR)
	  <<"ERROR: Butterfly preconditioner not implemented yet. Sorry." << std::endl;		    

	  case WiedemannTraits::SPARSE:
	  {
	  commentator.start ("Constructing sparse preconditioner");
							
	  P = new LambdaSparseMatrix<Ring> (_R,Ap->coldim(),Ap->rowdim(),2);
				
	  PAQ = new Compose<LambdaSparseMatrix<Ring>, IMatrix> (*P,A);
				
	  P->apply(Pb,b);
				
	  LambdaSparseMatrix<Field> Pmodp(F,*P);
				
	  PApQ = new Compose<LambdaSparseMatrix<Field>, FMatrix> (Pmodp, *Ap);
				
	  commentator.stop ("done");
	  break;
	  }
		
	  case WiedemannTraits::TOEPLITZ:
	  commentator.report (Commentator::LEVEL_IMPORTANT, INTERNAL_ERROR)
	  << "ERROR: Toeplitz preconditioner not implemented yet. Sorry." << std::endl;

	  case WiedemannTraits::NONE:
	  throw PreconditionFailed (__FUNCTION__, __LINE__, "preconditioner is BUTTERFLY, SPARSE, or TOEPLITZ");

	  default:
	  throw PreconditionFailed (__FUNCTION__, __LINE__, "preconditioner is BUTTERFLY, SPARSE, or TOEPLITZ");
	  }



	  }
	*/
	
	
	// SPECIALIZATION FOR BLOCK WIEDEMANN 	

	// note: if Vector1 != Vector2 compilation of solve or solveSingluar will fail (via an invalid call to sparseprecondition)!
	// maybe they should not be templated separately, or sparseprecondition should be rewritten

	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,BlockWiedemannTraits>::solve (Vector1& num, Integer& den,
											       const IMatrix& A,
											       const Vector2& b,
											       const bool old=false,
											       int maxPrimes) const {
		SolverReturnStatus status=SS_FAILED;
		
		switch (A.rowdim() == A.coldim() ? solveNonsingular(num, den, A,b) : SS_SINGULAR) {
			
		case SS_OK:
			status=SS_OK;
			break;
			
		case SS_SINGULAR:
			std::cerr<<"switching to singular\n";
			//status=solveSingular(num, den,A,b);
			break;

		case SS_FAILED:			
			break;

		default:
			throw LinboxError ("Bad return value from solveNonsingular");
			
		}

		return status;
	}

	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,BlockWiedemannTraits>::solveNonsingular (Vector1& num, Integer& den,
													  const IMatrix& A,
													  const Vector2& b,
													  int maxPrimes) const {
		// checking if matrix is square
		linbox_check(A.rowdim() == A.coldim());
	
		// checking size of system
		linbox_check(A.rowdim() == b.size());

		size_t m,n;
		integer tmp,tmproot;
		tmp=A.coldim();
		//m = n = tmp.bitsize();
		//m = n = sqrt(tmp);
		//m = n = root(tmp,3); // wrong # args to root. -bds
		m = n = root(tmproot, tmp,3);
		m = n = tmproot;
		std::cout<<"block factor= "<<m<<"\n";;
		typedef SparseMatrix<Field> FMatrix;		
		FMatrix *Ap;

		Field F(_prime);
		MatrixHom::map (Ap, A, F);
		Transpose<FMatrix > Bp(*Ap);
		std::cout<<"Ap:\n";
		Ap->write(std::cout);
		typedef BlockWiedemannLiftingContainer<Ring, Field, Transpose<IMatrix >, Transpose<FMatrix > > LiftingContainer;
		
		Transpose<IMatrix> B(A);
		
		LiftingContainer lc(_R, F, B, Bp, b,_prime, m, n);
	
		RationalReconstruction<LiftingContainer> re(lc);
		
		re.getRational(num, den, 0);
#ifdef RSTIMING		
		ttNonsingularSolve.update(re, lc);
#endif
		delete Ap;		
		
		return SS_OK;	
	}       

	// END OF SPECIALIZATION FOR BLOCK WIEDEMANN

		   

	// SPECIALIZATION FOR DIXON
	
	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,DixonTraits>::solve 
	(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, const bool old, int maxPrimes, const SolverLevel level ) const {

		SolverReturnStatus status;	
		while (maxPrimes > 0){
#ifdef SKIP_NONSINGULAR
			switch (SS_SINGULAR) {
#else
				switch (A.rowdim() == A.coldim() ? solveNonsingular(num, den,A,b,old,maxPrimes) : SS_SINGULAR) {
#endif
					
				case SS_OK:
#ifdef DEBUG_DIXON
					std::cout <<"nonsingular worked\n";
#endif
					return SS_OK;
					break;
					
				case SS_SINGULAR:
#ifdef DEBUG_DIXON
					std::cout<<"switching to singular\n";
#endif
					status = solveSingular(num, den,A,b,maxPrimes,level);
					if (status != SS_FAILED) 
						return status;
					break;
					
				case SS_FAILED:
					std::cout <<"nonsingular failed\n";
					break;
					
				default:
					throw LinboxError ("Bad return value from solveNonsingular");
					
				}
				maxPrimes--;
				if (maxPrimes > 0) chooseNewPrime();
			}
			return SS_FAILED;
		}
		


	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,DixonTraits>::solveNonsingular 
	(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, bool oldMatrix, int maxPrimes) const {

	
#ifdef DEBUG_DIXON
		std::cout << "entering nonsingular solver\n";
#endif
		int trials = 0, notfr;

		// history sensitive data for optimal reason
		static const IMatrix* IMP = 0;
		
		static BlasBlackbox<Field>* FMP;
		Field *F=NULL;

		do {
			if (trials == maxPrimes) return SS_SINGULAR;			
			if (trials != 0) chooseNewPrime();
			trials++;
#ifdef DEBUG_DIXON
			//std::cout << "_prime: "<<_prime<<"\n";
			std::cout<<"A:=\n";
			A.write(std::cout);
			std::cout<<"b:=\n";
			for (size_t i=0;i<b.size();++i) std::cout<<b[i]<<" , ";
			std::cout<<std::endl;			
#endif		       
#ifdef RSTIMING
			tNonsingularSetup.start();
#endif
			typedef typename Field::Element Element;
			typedef typename Ring::Element Integer;

			// checking size of system
			linbox_check(A.rowdim() == A.coldim());
			linbox_check(A.rowdim() == b.size());

			LinBox::integer tmp;		
		
			// if input matrix A is different one.
			if (!oldMatrix) {
				
				//delete IMP;
		
				// Could delete a non allocated matrix -> segfault
				//delete FMP;
		
				IMP = &A;					
		
				F= new Field (_prime);					
		
				//FMP = new BlasBlackbox<Field>(*F, A.rowdim(),A.coldim());
			
				MatrixHom::map (FMP, A, *F); // use MatrixHom to reduce matrix PG 2005-06-16
				//typename BlasBlackbox<Field>::RawIterator iter_p  = FMP->rawBegin();
				//typename IMatrix::ConstRawIterator iter  = A.rawBegin();
				//for (;iter != A.rawEnd();++iter,++iter_p)
				//	F->init(*iter_p, _R.convert(tmp,*iter));

#ifdef DEBUG_DIXON
				std::cout<< "p = ";
				F->write(std::cout);
				std::cout<<" A mod p :=\n";
				FMP->write(std::cout);
#endif				
			
				if (!checkBlasPrime(_prime)){
					FMP = new BlasBlackbox<Field>(*F, A.rowdim(),A.coldim());
					notfr = MatrixInverse::matrixInverseIn(*F,*FMP);
				}
				else {
					BlasBlackbox<Field> *invA = new BlasBlackbox<Field>(*F, A.rowdim(),A.coldim());
					BlasMatrixDomain<Field> BMDF(*F);
#ifdef RSTIMING
					tNonsingularSetup.stop();
					ttNonsingularSetup += tNonsingularSetup;
					tNonsingularInv.start();
#endif				
					BMDF.invin(*invA, *FMP, notfr); //notfr <- nullity
					delete FMP;
					FMP = invA;
					// 					std::cout << "notfr = " << notfr << std::endl;
					// 					std::cout << "inverse mod p: " << std::endl;
					// 					FMP->write(std::cout, *F);
#ifdef RSTIMING
					tNonsingularInv.stop();
					ttNonsingularInv += tNonsingularInv;
#endif
				}
			}
			else {
#ifdef RSTIMING
				tNonsingularSetup.stop();
				ttNonsingularSetup += tNonsingularSetup;
#endif
				notfr = 0;
			}
		} while (notfr);

#ifdef DEBUG_DIXON
		std::cout<<"A^-1 mod p :=\n";
		FMP->write(std::cout);
#endif		

		typedef DixonLiftingContainer<Ring,Field,IMatrix,BlasBlackbox<Field> > LiftingContainer;		
		LiftingContainer lc(_R, *F, A, *FMP, b, _prime);
		RationalReconstruction<LiftingContainer > re(lc);
		if (!re.getRational(num, den, 0)){
			delete FMP;
			return SS_FAILED;
		}
#ifdef RSTIMING
		ttNonsingularSolve.update(re, lc);
#endif	
		delete FMP;

		if (F!=NULL)
			delete F;
		return SS_OK;
	}

	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,DixonTraits>::solveSingular 
	(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, int maxPrimes, const SolverLevel level) const {	
		return monolithicSolve (num, den, A, b, false, false, maxPrimes, level);
	}

	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,DixonTraits>::findRandomSolution 
	(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, int maxPrimes, const SolverLevel level ) const {
		
		return monolithicSolve (num, den, A, b, false, true, maxPrimes, level);
	}


	// Most solving is done by the routine below.
	// There used to be one for random and one for deterministic, but they have been merged to ease with 
	//  repeated code (certifying inconsistency, optimization are 2 examples)

	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,DixonTraits>::monolithicSolve 
	(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, bool makeMinDenomCert, bool randomSolution,
	 int maxPrimes, const SolverLevel level) const {

		if (level == SL_MONTECARLO && maxPrimes > 1) 
			std::cout << "WARNING: Even if maxPrimes > 1, SL_MONTECARLO uses just one prime." << std::endl;
		//if (makeMinDenomCert && !randomSolution) 
		//	std::cout << "WARNING: Will not compute a certificate of minimal denominator deterministically." << std::endl;
		if (makeMinDenomCert && level == SL_MONTECARLO) 
			std::cout << "WARNING: No certificate of min-denominality generated due to  level=SL_MONTECARLO" << std::endl;
		int trials = 0;
		while (trials < maxPrimes){
			if (trials != 0) chooseNewPrime();
			trials++;
#ifdef DEBUG_DIXON
			std::cout << "_prime: "<<_prime<<"\n";
#endif		       
#ifdef RSTIMING
			tSetup.start();
#endif

			typedef typename Field::Element Element;
			typedef typename Ring::Element Integer;
			typedef DixonLiftingContainer<Ring, Field, 
				BlasBlackbox<Ring>, BlasBlackbox<Field> > LiftingContainer;
		

			// checking size of system
			linbox_check(A.rowdim() == b.size());
		
			LinBox::integer tmp;
			Integer _rone,_rzero;
			_R.init(_rone,1);
			_R.init(_rzero,0);
			
			Field F (_prime);		
			BlasMatrixDomain<Ring>  BMDI(_R);
			BlasMatrixDomain<Field> BMDF(F);
			BlasApply<Ring> BAR(_R);
			MatrixDomain<Ring> MD(_R);
			VectorDomain<Ring> VDR(_R);

			BlasBlackbox<Ring> A_check(_R, A); // used to check answer later
			//  			BlasMatrix<Integer> A_jonx(A);

			// TAS_xxx stands for Transpose Augmented System (A|b)t
			// this provides a factorization (A|b) = TAS_Pt . TAS_Ut . TAS_Qt . TAS_Lt
			// such that    
			// - TAS_P . (A|b) . TAS_Q   has nonzero principal minors up to TAS_rank
			// - TAS_Q permutes b to the (TAS_rank)th column of A iff the system is inconsistent mod p

			BlasBlackbox<Field>* TAS_factors = new BlasBlackbox<Field>(F, A.coldim()+1, A.rowdim());
			Hom<Ring, Field> Hmap(_R, F);

			BlasBlackbox<Field> *Ap;
			MatrixHom::map(Ap, A, F);

			for (size_t i=0;i<A.rowdim();++i)
				for (size_t j=0;j<A.coldim();++j)
					//F.init(TAS_factors->refEntry(j,i),_R.convert(tmp,A.getEntry(i,j)));
					//Hmap.image(TAS_factors->refEntry(j,i),A.getEntry(i,j));
					TAS_factors->setEntry(j,i, Ap->getEntry(i,j));
					
			delete Ap;

			for (size_t i=0;i<A.rowdim();++i){
				typename Field::Element tmpe;
				F.init(tmpe);
				//Hmap.image(TAS_factors->refEntry(A.coldim(),i), b[i]);
				F.init(tmpe,_R.convert(tmp,b[i]));
				TAS_factors->setEntry(A.coldim(),i, tmpe);
			}
#ifdef RSTIMING
			tSetup.stop();
			ttSetup += tSetup;
			tLQUP.start();
#endif
			LQUPMatrix<Field>* TAS_LQUP = new LQUPMatrix<Field>(F, *TAS_factors);
			size_t TAS_rank = TAS_LQUP->getrank();
			// 			std::cout << "tas-rank: " << TAS_rank << std::endl;
			
			// check consistency. note, getQ returns Qt.
			BlasPermutation TAS_P = TAS_LQUP->getP();
			BlasPermutation TAS_Qt = TAS_LQUP->getQ();
			std::vector<size_t> srcRow(A.rowdim()), srcCol(A.coldim()+1);
			std::vector<size_t>::iterator sri = srcRow.begin(), sci = srcCol.begin();
			for (size_t i=0; i<A.rowdim(); i++, sri++) *sri = i;
			for (size_t i=0; i<A.coldim()+1; i++, sci++) *sci = i;
			indexDomain iDom;
			BlasMatrixDomain<indexDomain> BMDs(iDom);
			BMDs.mulin_right(TAS_Qt, srcCol);
			BMDs.mulin_right(TAS_P, srcRow);

#ifdef DEBUG_INC
			std::cout << "P takes (0 1 ...) to (";
			for (size_t i=0; i<A.rowdim(); i++) std::cout << srcRow[i] << ' '; std::cout << ')' << std::endl;
			std::cout << "Q takes (0 1 ...) to (";
			for (size_t i=0; i<A.coldim()+1; i++) std::cout << srcCol[i] << ' '; std::cout << ')' << std::endl;
#endif
			
			bool appearsInconsistent = (srcCol[TAS_rank-1] == A.coldim());
			size_t rank = TAS_rank - (appearsInconsistent ? 1 : 0);
#ifdef DIXON_DEBUG
			std::cout << "TAS_rank, rank: " << TAS_rank << ' ' << rank << std::endl;
#endif
#ifdef RSTIMING
			tLQUP.stop();
			ttLQUP += tLQUP;
#endif
			if (rank == 0) { 
				delete TAS_LQUP;
				delete TAS_factors;
				//special case when A = 0, mod p. dealt with to avoid crash later
				bool aEmpty = true;
				if (level >= SL_LASVEGAS) { // in monte carlo, we assume A is actually empty
					typename BlasBlackbox<Ring>::RawIterator iter = A_check.rawBegin();
					for (; aEmpty && iter != A_check.rawEnd(); ++iter)
						aEmpty &= _R.isZero(*iter);
				}
				if (aEmpty) {
					for (size_t i=0; i<b.size(); i++)
						if (!_R.areEqual(b[i], _rzero)) {
							if (level >= SL_CERTIFIED) {
								lastCertificate.clearAndResize(b.size());
								_R.assign(lastCertificate.numer[i], _rone);
							}
							return SS_INCONSISTENT;
						}
					/*
					// both A and b are all zero.
					for (size_t i=0; i<answer.size(); i++) {
					answer[i].first = _rzero;
					answer[i].second = _rone;
					}
					*/
					_R. assign (den, _rone);
					for (typename Vector1::iterator p = num. begin(); p != num. end(); ++ p)
						_R. assign (*p, _rzero);

					if (level >= SL_LASVEGAS)
						_R.init(lastCertifiedDenFactor, 1);
					if (level == SL_CERTIFIED) {
						_R.init(lastZBNumer, 0);
						lastCertificate.clearAndResize(b.size());
					}
					return SS_OK;
				}
				// so a was empty mod p but not over Z.
				continue; //try new prime
			}
	
			BlasBlackbox<Field>* Atp_minor_inv = NULL;

			if ((appearsInconsistent && level > SL_MONTECARLO) || randomSolution == false) {
				// take advantage of the (LQUP)t factorization to compute
				// an inverse to the leading minor of (TAS_P . (A|b) . TAS_Q) 
#ifdef RSTIMING
				tFastInvert.start();
#endif
				Atp_minor_inv = new BlasBlackbox<Field>(F, rank, rank);
				

				FFPACK::LQUPtoInverseOfFullRankMinor(F, rank, TAS_factors->getPointer(), A.rowdim(), 
								     TAS_Qt.getPointer(), 
								     Atp_minor_inv->getPointer(), rank);
#ifdef RSTIMING
				tFastInvert.stop();
				ttFastInvert += tFastInvert;
#endif
			}

			delete TAS_LQUP;
			delete TAS_factors;

			if (appearsInconsistent && level <= SL_MONTECARLO)
				return SS_INCONSISTENT;

			if (appearsInconsistent) {
#ifdef RSTIMING
				tCheckConsistency.start();
#endif			
				std::vector<Integer> zt(rank);
				for (size_t i=0; i<rank; i++)
					_R.assign(zt[i], A.getEntry(srcRow[rank], srcCol[i]));

				BlasBlackbox<Ring> At_minor(_R, rank, rank);
				for (size_t i=0; i<rank; i++)
					for (size_t j=0; j<rank; j++)
						_R.assign(At_minor.refEntry(j, i), A.getEntry(srcRow[i], srcCol[j]));
#ifdef DEBUG_INC
				At_minor.write(std::cout << "At_minor:" << std::endl, _R);
				Atp_minor_inv->write(std::cout << "Atp_minor_inv:" << std::endl, F);
				std::cout << "zt: "; for (size_t i=0; i<rank; i++) std::cout << zt[i] <<' '; std::cout << std::endl;
#endif
				//BlasBlackbox<Ring>  BBAt_minor(_R, At_minor);
				//BlasBlackbox<Field> BBAtp_minor_inv(F, *Atp_minor_inv);
				//BlasMatrix<Integer>  BBAt_minor( At_minor);
				//BlasMatrix<Element>  BBAtp_minor_inv( *Atp_minor_inv);

#ifdef RSTIMING
				tCheckConsistency.stop();
				ttCheckConsistency += tCheckConsistency;
#endif			

				LiftingContainer lc(_R, F, At_minor, *Atp_minor_inv, zt, _prime);
				
				RationalReconstruction<LiftingContainer > re(lc);
				
				Vector1 short_num(rank); Integer short_den;
				
				if (!re.getRational(short_num, short_den,0)) 
					return SS_FAILED;    // dirty, but should not be called
				// under normal circumstances
#ifdef RSTIMING
				ttConsistencySolve.update(re, lc);
				tCheckConsistency.start();
#endif
				//delete Atp_minor_inv;
				
				VectorFraction<Ring> cert(_R, short_num. size());
				cert. numer = short_num;
				cert. denom = short_den;
				cert.numer.resize(b.size());
				_R.subin(cert.numer[rank], cert.denom);
				_R.init(cert.denom, 1);
				BMDI.mulin_left(cert.numer, TAS_P);
#ifdef DEBUG_INC
				cert.write(std::cout << "cert:") << std::endl;
#endif

				bool certifies = true; //check certificate
				std::vector<Integer> certnumer_A(A.coldim());
				BAR.applyVTrans(certnumer_A, A_check, cert.numer);
				typename std::vector<Integer>::iterator cai = certnumer_A.begin();
				for (size_t i=0; certifies && i<A.coldim(); i++, cai++) 
					certifies &= _R.isZero(*cai);				
#ifdef RSTIMING
				tCheckConsistency.stop();
				ttCheckConsistency += tCheckConsistency;
#endif
				if (certifies) { 
					if (level == SL_CERTIFIED) lastCertificate.copy(cert);
					return SS_INCONSISTENT;
				}
				std::cout<<"system is suspected to be inconsistent but it was only a bad prime\n";
				continue; // try new prime. analogous to u.A12 != A22 in Muld.+Storj.
			}
			
#ifdef RSTIMING
			tMakeConditioner.start();
#endif
			// we now know system is consistent mod p.
			BlasBlackbox<Ring> A_minor(_R, rank, rank);    // -- will have the full rank minor of A
			BlasBlackbox<Field> *Ap_minor_inv;          // -- will have inverse mod p of A_minor
			BlasBlackbox<Ring> *P = NULL, *B = NULL;   // -- only used in random case 

			if (!randomSolution) {
				// use shortcut - transpose Atp_minor_inv to get Ap_minor_inv
				Element _rtmp; 
				Ap_minor_inv = Atp_minor_inv;
				for (size_t i=0; i<rank; i++)
					for (size_t j=0; j<i; j++) {
						Ap_minor_inv->getEntry(_rtmp, i, j);
						Ap_minor_inv->setEntry(i, j, Ap_minor_inv->refEntry(j, i));
						Ap_minor_inv->setEntry(j, i, _rtmp);
					}

				// permute original entries into A_minor
				for (size_t i=0; i<rank; i++)
					for (size_t j=0; j<rank; j++)
						_R.assign(A_minor.refEntry(i, j), A_check.getEntry(srcRow[i], srcCol[j]));
#ifdef RSTIMING
				tMakeConditioner.stop();
				ttMakeConditioner += tMakeConditioner;
#endif
			
				if (makeMinDenomCert && level >= SL_LASVEGAS){
					B = new BlasBlackbox<Ring>(_R, rank, A.coldim());
					for (size_t i=0; i<rank; i++)
						for (size_t j=0; j<A.coldim(); j++)
							_R.assign(B->refEntry(i, j), A_check.getEntry(srcRow[i],j));
				}					
			}
			else {
				P = new BlasBlackbox<Ring>(_R, A.coldim(), rank);	
				B = new BlasBlackbox<Ring>(_R, rank,A.coldim());
				BlasBlackbox<Field> Ap_minor(F, rank, rank);
				Ap_minor_inv = new BlasBlackbox<Field>(F, rank, rank);
				int nullity;
				
				LinBox::integer tmp=0;
				size_t maxBitSize = 0;
				for (size_t i=0; i<rank; i++)
					for (size_t j=0; j<A.coldim(); j++){
						_R.assign(B->refEntry(i, j), A_check.getEntry(srcRow[i], j));
						_R.convert(tmp, A_check.getEntry(srcRow[i], j));
						maxBitSize = std::max(maxBitSize, tmp.bitsize());
					}
#ifdef RSTIMING
				bool firstLoop = true;
#endif
				// prepare B to be preconditionned through BLAS matrix mul
				MatrixApplyDomain<Ring, BlasBlackbox<Ring> > MAD(_R,*B);
				MAD.setup(2);

				do { // O(1) loops of this preconditioner expected
#ifdef RSTIMING
					if (firstLoop) 
						firstLoop = false;
					else
						tMakeConditioner.start();
#endif
					// compute P a n*r random matrix of entry in [0,1]
					typename BlasBlackbox<Ring>::RawIterator iter;
					for (iter = P->rawBegin(); iter != P->rawEnd(); ++iter) {
						if (rand() > RAND_MAX/2) 
							_R.assign(*iter, _rone);
						else
							_R.assign(*iter, _rzero);
					}

					// compute A_minor = B.P
					/*
					  if (maxBitSize * log((double)A.coldim()) > 53) 
					  MD.mul(A_minor, *B, *P);
					  else {
					  double *B_dbl= new double[rank*A.coldim()]; 
					  double *P_dbl= new double[A.coldim()*rank]; 
					  double *A_minor_dbl = new double[rank*rank];
					  for (size_t i=0;i<rank;++i)
					  for (size_t j=0;j<A.coldim(); j++){
					  _R.convert(B_dbl[j+i*A.coldim()], B->getEntry(i,j));
					  _R.convert(P_dbl[i+j*rank], P->getEntry(j,i));
					  }
					  cblas_dgemm(CblasRowMajor, CblasNoTrans,
					  CblasNoTrans,
					  rank, rank, A.coldim(), 1,
					  B_dbl, A.coldim(), P_dbl, rank, 0,A_minor_dbl, rank);

					  for (size_t i=0;i<rank;++i)
					  for (size_t j=0;j<rank;++j)
					  _R.init(A_minor.refEntry(i,j),A_minor_dbl[j+i*rank]);

					  delete[] B_dbl;	
					  delete[] P_dbl;
					  delete[] A_minor_dbl;
					  }
					*/
								
					MAD.applyM(A_minor,*P);



					// set Ap_minor = A_minor mod p, try to compute inverse
					for (size_t i=0;i<rank;++i)
						for (size_t j=0;j<rank;++j)
							F.init(Ap_minor.refEntry(i,j),
							       _R.convert(tmp,A_minor.getEntry(i,j)));
#ifdef RSTIMING
					tMakeConditioner.stop();
					ttMakeConditioner += tMakeConditioner;
					tInvertBP.start();
#endif
					BMDF.inv(*Ap_minor_inv, Ap_minor, nullity); 
#ifdef RSTIMING
					tInvertBP.stop();
					ttInvertBP += tInvertBP;
#endif
				} while (nullity > 0);
			}
			// Compute newb = (TAS_P.b)[0..(rank-1)]
			std::vector<Integer> newb(b);
			BMDI.mulin_right(TAS_P, newb);
			newb.resize(rank);

			BlasBlackbox<Ring>  BBA_minor(_R,A_minor);
			//BlasBlackbox<Field> BBA_inv(F,*Ap_minor_inv);
			//BlasMatrix<Integer>  BBA_minor(A_minor);
			//BlasMatrix<Element> BBA_inv(*Ap_minor_inv);
			//LiftingContainer lc(_R, F, BBA_minor, BBA_inv, newb, _prime);
			LiftingContainer lc(_R, F, BBA_minor, *Ap_minor_inv, newb, _prime);

#ifdef DEBUG_DIXON
			std::cout<<"length of lifting: "<<lc.length()<<std::endl;
#endif
			RationalReconstruction<LiftingContainer > re(lc);

			Vector1 short_num(rank); Integer short_den;
			
			if (!re.getRational(short_num, short_den,0))
				return SS_FAILED;    // dirty, but should not be called
			// under normal circumstances		
#ifdef RSTIMING
			ttSystemSolve.update(re, lc);
			tCheckAnswer.start();
#endif		
			VectorFraction<Ring> answer_to_vf(_R, short_num. size());
			answer_to_vf. numer = short_num;
			answer_to_vf. denom = short_den;

			if (!randomSolution) {
				// short_answer = TAS_Q * short_answer
				answer_to_vf.numer.resize(A.coldim()+1,_rzero);
				BMDI.mulin_left(answer_to_vf.numer, TAS_Qt);
				answer_to_vf.numer.resize(A.coldim());
			}
			else {
				// short_answer = P * short_answer
				typename Vector<Ring>::Dense newNumer(A.coldim());
				BAR.applyV(newNumer, *P, answer_to_vf.numer);
				//BAR.applyVspecial(newNumer, *P, answer_to_vf.numer);
				
				answer_to_vf.numer = newNumer;
			}

			if (level >= SL_LASVEGAS) { //check consistency

				std::vector<Integer> A_times_xnumer(b.size());
	
				BAR.applyV(A_times_xnumer, A_check, answer_to_vf.numer);
				
				Integer tmpi;
				
				typename Vector2::const_iterator ib = b.begin();
				typename std::vector<Integer>::iterator iAx = A_times_xnumer.begin();
				int thisrow = 0;
				bool needNewPrime = false;
				
				for (; !needNewPrime && ib != b.end(); iAx++, ib++, thisrow++)
					if (!_R.areEqual(_R.mul(tmpi, *ib, answer_to_vf.denom), *iAx)) {
						// should attempt to certify inconsistency now
						// as in "if [A31 | A32]y != b3" of step (4)
						needNewPrime = true;
					}
				
				if (needNewPrime) {
					delete Ap_minor_inv;          
					if (randomSolution) {delete P; delete B;}
#ifdef RSTIMING
					tCheckAnswer.stop();
					ttCheckAnswer += tCheckAnswer;
#endif
					continue; //go to start of main loop
				}
			}
			
			//answer_to_vf.toFVector(answer);
			num = answer_to_vf. numer;
			den = answer_to_vf. denom;
#ifdef RSTIMING  
			tCheckAnswer.stop();
			ttCheckAnswer += tCheckAnswer;
#endif			
			if (makeMinDenomCert && level >= SL_LASVEGAS){  // && randomSolution) {
				// To make this certificate we solve with the same matrix as to get the 
				// solution, except transposed.
#ifdef RSTIMING
				tCertSetup.start();
#endif
				Integer _rtmp;
				Element _ftmp;
				for (size_t i=0; i<rank; i++)
					for (size_t j=0; j<i; j++) {
						Ap_minor_inv->getEntry(_ftmp, i, j);
						Ap_minor_inv->setEntry(i, j, Ap_minor_inv->refEntry(j, i));
						Ap_minor_inv->setEntry(j, i, _ftmp);
					}

				for (size_t i=0; i<rank; i++)
					for (size_t j=0; j<i; j++) {
						A_minor.getEntry(_rtmp, i, j);
						A_minor.setEntry(i, j, A_minor.refEntry(j, i));
						A_minor.setEntry(j, i, _rtmp);
					}

				// we then try to create a partial certificate
				// the correspondance with Algorithm MinimalSolution from Mulders/Storjohann:
				// paper | here
				// P     | TAS_P
				// Q     | transpose of TAS_Qt
				// B     | *B (== TAS_P . A,  but only top #rank rows)
				// c     | newb (== TAS_P . b,   but only top #rank rows)
				// P     | P
				// q     | q
				// U     | {0, 1}
				// u     | u
				// z-hat | lastCertificate
				
				// we multiply the certificate by TAS_Pt at the end
				// so it corresponds to b instead of newb

				//q in {0, 1}^rank
				std::vector<Integer> q(rank);
				typename std::vector<Integer>::iterator q_iter;

				bool allzero;
				do {
					allzero = true;
					for (q_iter = q.begin(); q_iter != q.end(); ++q_iter) {
						if (rand() > RAND_MAX/2) {
							(*q_iter) = _rone;
							allzero = false;
						}
						else
							(*q_iter) = _rzero;
					}
				} while (allzero);
#ifdef RSTIMING
				tCertSetup.stop();
				ttCertSetup += tCertSetup;
#endif
				//LiftingContainer lc2(_R, F, BBA_minor, BBA_inv, q, _prime);
				LiftingContainer lc2(_R, F, BBA_minor, *Ap_minor_inv, q, _prime);

				RationalReconstruction<LiftingContainer> re(lc2);
				Vector1 u_num(rank); Integer u_den;
				if (!re.getRational(u_num, u_den,0)) return SS_FAILED;

#ifdef RSTIMING
				ttCertSolve.update(re, lc2);
				tCertMaking.start();
#endif
				// remainder of code does   z <- denom(partial_cert . Mr) * partial_cert * Qt 
				VectorFraction<Ring> u_to_vf(_R, u_num.size());
				u_to_vf. numer = u_num;
				u_to_vf. denom = u_den;
				std::vector<Integer> uB(A.coldim());
				BAR.applyVTrans(uB, *B, u_to_vf.numer);

				// 				std::cout << "BP: ";
				// 				A_minor.write(std::cout, _R) << std::endl;
				// 				std::cout << "q: ";
				// 				for (size_t i=0; i<rank; i++) std::cout << q[i]; std::cout << std::endl;
				// 				u_to_vf.write(std::cout  << "u: ") << std::endl;

				Integer numergcd = _rzero;
				vectorGcdIn(numergcd, _R, uB);

				// denom(partial_cert . Mr) = partial_cert_to_vf.denom / numergcd
				VectorFraction<Ring> z(_R, b.size()); //new constructor
				u_to_vf.numer.resize(A.rowdim());

				BMDI.mul(z.numer, u_to_vf.numer, TAS_P);

				z.denom = numergcd;

				// 				z.write(std::cout << "z: ") << std::endl;

				if (level >= SL_CERTIFIED)
					lastCertificate.copy(z);
				
				// output new certified denom factor
				Integer znumer_b, zbgcd;
				VDR.dotprod(znumer_b, z.numer, b);
				_R.gcd(zbgcd, znumer_b, z.denom);
				_R.div(lastCertifiedDenFactor, z.denom, zbgcd);

				if (level >= SL_CERTIFIED) 
					_R.div(lastZBNumer, znumer_b, zbgcd);
#ifdef RSTIMING
				tCertMaking.stop();
				ttCertMaking += tCertMaking;
#endif
			}

			delete Ap_minor_inv;			
			delete B;
			
			if (randomSolution) {delete P;}

			// done making certificate, lets blow this popstand
			return SS_OK;
		}
		return SS_FAILED; //all primes were bad
	}




	/*
	 * Specialization for Block Hankel method
	 */
	
	// solve non singular system using block Hankel
	template <class Ring, class Field, class RandomPrime>
	template <class IMatrix, class Vector1, class Vector2>	
	SolverReturnStatus RationalSolver<Ring,Field,RandomPrime,BlockHankelTraits>::solveNonsingular 
	(Vector1& num, Integer& den, const IMatrix& A, const Vector2& b, size_t blocksize, int maxPrimes) const {

		linbox_check(A.rowdim() == A.coldim());
		linbox_check(n % blocksize == 0);
		
		typedef typename Field::Element Element;

		

		// reduce the matrix mod p
		Field F(_prime);
		typedef typename IMatrix::template rebind<Field>::other FMatrix;
		FMatrix *Ap;
		typename IMatrix::template rebind<Field>()( Ap, A, F);

		// precondition Ap  with a random diagonal Matrix
		typename Field::RandIter G(F,0,123456);
		std::vector<Element> diag(Ap->rowdim());
		
		for(size_t i=0;i<Ap->rowdim();++i){
			do {
				G.random(diag[i]);
			} while(F.isZero(diag[i]));
		}
	


		Diagonal<Field> D(F, diag);
		
		Compose<Diagonal<Field>, FMatrix> DAp(D,*Ap);

		size_t n = A.coldim();
		size_t numblock = n/blocksize;

		// generate randomly U and V
		BlasMatrix<Element> U(blocksize,A.rowdim()), V(A.coldim(),blocksize);
	
		for (size_t j=0;j<blocksize; ++j)
			for (size_t i=j*numblock;i<(j+1)*numblock;++i){
				G.random(V.refEntry(i,j));
			}
		for (size_t i=0;i<n;++i)
			G.random(U.refEntry(0,i));			

#ifdef RSTIMING
		Timer chrono;
		chrono.clear();
		chrono.start();
#endif

		// compute the block krylov sequence associated to U.A^i.V	
		BlackboxBlockContainerRecord<Field, Compose<Diagonal<Field>,FMatrix> >  Seq(&DAp, F, U, V, false);
	
#ifdef RSTIMING
		chrono.stop();
		std::cout<<"sequence generation: "<<chrono<<"\n";
		chrono.clear();
		chrono.start();
#endif

		// compute the inverse of the Hankel matrix associated with the Krylov Sequence
		BlockHankelInverse<Field> Hinv(F, Seq.getRep());
		std::vector<Element> y(n), x(n, 1);

#ifdef RSTIMING
		chrono.stop();
		std::cout<<"inverse block hankel: "<<chrono<<"\n";
#endif

		typedef BlockHankelLiftingContainer<Ring,Field,IMatrix,Compose<Diagonal<Field>,FMatrix>, BlasMatrix<Element> > LiftingContainer;		
		LiftingContainer lc(_R, F, A, DAp, D, Hinv, U, V, b, _prime);		
		RationalReconstruction<LiftingContainer > re(lc);
		
		if (!re.getRational(num, den, 0)) return SS_FAILED;

#ifdef RSTIMING
		std::cout<<"lifting bound computation : "<<lc.ttSetup<<"\n";
		std::cout<<"residue computation       : "<<lc.ttRingApply<<"\n";
		std::cout<<"rational reconstruction   : "<<re.ttRecon<<"\n";
#endif
		
		return SS_OK;
	}





} //end of namespace LinBox




/* Author Z. Wan
 * Modified to fit in linbox
 * Implementation the algorithm in manuscript, available at http://www.cis.udel.edu/~wan/jsc_wan.ps
 */



#ifndef __RATIONAL_SOLVER2__H__
#define __RATIONAL_SOLVER2__H__

#include <memory.h>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <linbox/integer.h>
#include <linbox/algorithms/rational-reconstruction2.h>

namespace LinBox {

#if __LINBOX_HAVE_DGETRF && __LINBOX_HAVE_DGETRI
	template <class Ring, class Field, class RandomPrime>
	inline int RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::cblas_dgeinv(double* M, int n) {
		enum CBLAS_ORDER order = CblasRowMajor;
		int lda = n;
		int P[n];
		int ierr = clapack_dgetrf (order, n, n, M, lda, P);
		if (ierr != 0) {
                    std::cerr << "In RationalSolver::cblas_dgeinv Matrix is not full rank" << std::endl;
                    return -1;
		}
		clapack_dgetri (order, n, M, lda, P);
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	inline int RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::cblas_rsol (int n, const double* M, integer* numx, integer& denx, double* b) {
		if (n < 1) return 0;
		double* IM = new double[n * n];
		memcpy ((void*)IM, (const void*)M, sizeof(double)*n*n);
		int ret;
		//compute the inverse by flops
		ret = cblas_dgeinv (IM, n); 
		if (ret != 0) {delete[] IM; return 1;}

		double mnorm = cblas_dOOnorm(M, n, n);
		// residual
		double* r = new double [n];
		// A^{-1}r
		double* x = new double [n];
		//ax  = A x
		double* ax = new double [n];
		// a digit, d \approx \alpha x
		double* d = new double [n];

		const double* p2;
		double* pd;
		const double T = 1 << 30;
	
		integer* num = new integer [n];
		integer* p_mpz;
		integer tmp_mpz, den, denB, B;

		den = 1;
		// compute the hadamard bound
		cblas_hbound (denB, n, n, M);      
		B = denB * denB;
		// shouble be a check for tmp_mpz
		tmp_mpz = 2 * mnorm + cblas_dmax (n, b, 1);
		B <<= 1; B *= tmp_mpz; //B *= tmp_mpz;
	
		//double log2 = log (2.0);
		double log2 = M_LN2;
		// r = b
		memcpy ((void*) r, (const void*) b, sizeof(double)*n);

		do  {
			cblas_dapply (n, n, IM, r, x);
			// compute ax
			cblas_dapply (n, n, M, x, ax);
			// compute ax = ax -r, the negative of residual
			cblas_daxpy (n, -1, r, 1, ax, 1);
			// compute possible shift
			double normr1, normr2, normr3, shift1, shift2;
			normr1 = cblas_dmax(n, r, 1);
			normr2 = cblas_dmax(n, ax, 1);
			normr3 = cblas_dmax(n, x, 1);
			//try to find a good scalar
			int shift = 30;
			if (normr2 <.0000000001) 
				shift = 30;
			else {
				shift1 = floor(log (normr1 / normr2) / log2) - 2;
				shift = (int)(30 < shift1 ? 30 : shift1);
			}

			normr3 = normr3 > 2 ? normr3 : 2;
			shift2 = floor(53. * log2 / log (normr3));
			shift = (int)(shift < shift2 ? shift : shift2);

			if (shift <= 0) {
#ifdef DEBUGRC
				printf ("%s", "Bad scalar \n");
				printf("%f, %f\n", normr1, normr2);
				printf ("%d, shift = ", shift);
				printf ("OO-norm of matrix: %f\n", cblas_dOOnorm(M, n, n));
				printf ("OO-norm of inverse: %f\n", cblas_dOOnorm(IM, n, n));
				printf ("Error, abort\n"); 
#endif
				delete[] IM; delete[] r; delete[] x; delete[] ax; delete[] d; delete[] num; 
				return 2;
			}

			int scalar = ((long long int)1 << shift);
			for (pd = d, p2 = x; pd != d + n; ++ pd, ++ p2) 
				//better use round, but sun sparc machine doesnot supprot it
				*pd = floor (*p2 * scalar);

			// update den
			den <<= shift; 
			//update num
			update_num (num, n, d, shift);
		
#ifdef DEBUGRC
			printf ("in iteration\n");
			printf ("residual=\n");
			printvec (r,  n);
			printf ("A^(-1) r\n");
			printvec (x,  n);
			printf ("scalar= ");
			printf ("%d \n", scalar);
			printf ("One digit=\n");
			printvec (d, n);
			printf ("Current bound= \n");
			std::cout << B;
			printf ("den= \n");
			std::cout << den;
			printf ("accumulate numerator=\n");
			printvec (num, n);
#endif
			// update r = r * shift - M d
			double tmp = 2 * mnorm + cblas_dmax (n, r, 1);
			if (tmp < T) update_r_int (r, n, M, d, shift);
			else update_r_ll (r, n, M, d, shift);
			//update_r_ll (r, n, M, d, shift);
		} while (den < B);
	
		integer q, rem, den_lcm, tmp_den;
		integer* p_x, * p_x1;
		p_mpz = num;
		p_x = numx;
		// construct first answer
		rational_reconstruction (*p_x, denx, *p_mpz, den, denB);
		++ p_mpz;
		++ p_x;

		int sgn;
		for (; p_mpz != num + n; ++ p_mpz, ++ p_x)  {
			sgn = sign (*p_mpz);
			tmp_mpz = denx * (*p_mpz);
			tmp_mpz = abs (tmp_mpz);
			integer::divmod (q, rem, tmp_mpz, den);
		
			if ( rem < denx)  {
				if (sgn >= 0)
					*p_x = q;
				else 
					*p_x = -q;
			}
			else {
				rem = den - rem;
				q += 1;
				if (rem < denx) {
					if (sgn >= 0)
						*p_x = q;
					else
						*p_x = -q;
				}
				else {
					rational_reconstruction (*p_x, tmp_den, *p_mpz, den, denB);
					lcm (den_lcm, tmp_den, denx);
					integer::divexact (tmp_mpz, den_lcm, tmp_den);
					integer::mul (*p_x, *p_x, tmp_mpz);
					integer::divexact (tmp_mpz, den_lcm, denx);
					denx = den_lcm;
					for (p_x1 = numx; p_x1 != p_x; ++ p_x1)
						integer::mul (*p_x1, *p_x1, tmp_mpz);
				}
			}	
		}
#ifdef DEBUGRC
		std::cout << "raiotanl answer\nCommon den = ";
		std::cout << denx;
		std::cout << "\nNumerator= \n";
		printvec (numx, n);
#endif
	
		//normalize the answer
		if (denx != 0) {	
			integer g; g = denx;
			for (p_x = numx; p_x != numx + n; ++ p_x)
				g = gcd (g, *p_x);
			for (p_x = numx; p_x != numx + n; ++ p_x)
				integer::divexact (*p_x, *p_x, g);
			integer::divexact (denx, denx, g);
		}
	
		//check if the answer is correct, not necessary
		cblas_mpzapply (n, n, M, (const integer*)numx, num);
		integer* sb = new integer [n];
		double* p;
		for (p_mpz = sb, p = b; p_mpz != sb + n; ++ p_mpz, ++ p) {
			*p_mpz = *p;
			integer::mulin(*p_mpz, denx);
		}
		ret = 0;
		for (p_mpz = sb, p_x = num; p_mpz != sb + n; ++ p_mpz, ++ p_x) 
			if (*p_mpz != *p_x) {
				ret = 3;
				break;
			}
#ifdef DEBUGRC
		if (ret == 3) {
	
			std::cout << "Input matrix:\n";
			for (int i = 0; i < n; ++ i) {
				const double* p = M + (i * n);
				printvec (p, n);
			}
			std::cout << "Input rhs:\n";
			printvec (b, n);
			std::cout << "Common den: " << denx << '\n';
			std::cout << "Numerator: ";
			printvec (numx, n);
			std::cout << "A num: ";
			printvec (num, n);
			std::cout << "denx rhs: ";
			printvec (sb, n);
		}
#endif

		// garbage collector
		delete[] IM; delete[] r; delete[] x; delete[] ax; delete[] d; delete[] num; delete[] sb;

		return ret;
	}

#endif


	template <class Ring, class Field, class RandomPrime>
	/* apply  y <- Ax */
	inline int RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::cblas_dapply (int m, int n, const double* A, const double* x, double* y) {
		cblas_dgemv (CblasRowMajor, CblasNoTrans, m, n, 1, A, n, x, 1, 0, y, 1);
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	inline int RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::cblas_mpzapply (int m, int n, const double* A, const integer* x, integer* y) {
		const double* p_A;
		const integer* p_x;
		integer* p_y;
		integer tmp;
		for (p_A = A, p_y = y; p_y != y + m; ++ p_y) {
			*p_y = 0;
			for (p_x = x; p_x != x + n; ++ p_x, ++ p_A) {
				//mpz_set_d (tmp, *p_A);
				//mpz_addmul_si (*p_y, *p_x, (int)(*p_A));
				tmp = *p_x  * (long long int)(*p_A);
				integer::addin (*p_y, tmp);
			}
		}
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	template <class Elt>
	inline int RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::printvec (const Elt* v, int n) {
		const Elt* p;
		std::cout << "\[";
		for (p = v; p != v + n; ++ p)
			std::cout << *p << ' ';
		std::cout << "]\n";
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	//update num, *num <- *num * 2^shift + d
	inline int RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::update_num (integer* num, int n, const double* d, int shift) {
		integer* p_mpz;
		integer tmp_mpz;
		const double* pd;
		for (p_mpz = num, pd = d; p_mpz != num + n; ++ p_mpz, ++ pd) {
			(*p_mpz) = (*p_mpz) << shift;
			tmp_mpz = *pd;
			integer::add (*p_mpz, *p_mpz, tmp_mpz);
		} 
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	//update r = r * shift - M d
	inline int RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::update_r_int (double* r, int n, const double* M, const double* d, int shift) {
		int tmp;
		double* p1;
		const double* p2;
		const double* pd;
		for (p1 = r, p2 = M; p1 != r + n; ++ p1) {
			tmp = (int)(long long int) *p1;
			tmp <<= shift;
			for (pd = d; pd != d + n; ++ pd, ++ p2) {
				tmp -= (int)(long long int)*pd * (int)(long long int)*p2;
			}
			*p1 = (double)tmp;
		}
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	//update r = r * shift - M d
	inline int RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::update_r_ll (double* r, int n, const double* M, const double* d, int shift) {
		long long int tmp;
		double* p1;
		const double* p2;
		const double* pd;
		for (p1 = r, p2 = M; p1 != r + n; ++ p1) {
			tmp = (long long int) *p1;
			tmp <<= shift;
			for (pd = d; pd != d + n; ++ pd, ++ p2) {
				tmp -= (long long int)*pd * (long long int) *p2;
			}
			*p1 = tmp;
		}
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	inline double RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::cblas_dOOnorm(const double* M, int m, int n) {
		double norm = 0;
		double old = 0;
		const double* p;
		for (p = M; p != M + (m * n); ) {
			old = norm;
			norm = cblas_dasum (n, p ,1);
			if (norm < old) norm = old;
			p += n;
		}	
		return norm;
	}

	template <class Ring, class Field, class RandomPrime>
	inline double RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::cblas_dmax (const int N, const double* a, const int inc) {
		return fabs(a[cblas_idamax (N, a, inc)]);
	}

	template <class Ring, class Field, class RandomPrime>
	inline int RationalSolver<Ring, Field, RandomPrime, NumericalTraits>::cblas_hbound (integer& b, int m, int n, const double* M){
		double norm = 0;
		const  double* p;
		integer tmp;
		b = 1;
		for (p = M; p != M + (m * n); ) {
			norm = cblas_dnrm2 (n, p ,1);
			tmp =  norm;
			integer::mulin (b, tmp);
			p += n;
		}

		return 0;
	}
}//LinBox

#endif

#endif