This file is indexed.

/usr/include/linbox/algorithms/signature.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/* Function related to the signature computation of symmetric matrices */
/* Author: Zhendong Wan */

#include <linbox/field/modular-double.h>
#include <linbox/field/modular-int32.h>
#include <linbox/algorithms/cra-early-multip.h>
#include <linbox/ffpack/ffpack.h>
#include <linbox/randiter/random-prime.h>
#include <linbox/matrix/blas-matrix.h>
#include <linbox/algorithms/blas-domain.h>
#include <linbox/solutions/minpoly.h>

namespace LinBox {

class Signature {
public:

	class BLAS_LPM_Method {};
	class Minpoly_Method {};
	
	template <class Matrix>
	bool isPosDef (const Matrix& M);

	template <class Matrix>
	static bool isPosDef (const Matrix& M, const BLAS_LPM_Method& meth) {
		RandomPrimeIterator::setSeed(time(0));
		size_t n = M. rowdim();
		std::vector<int> P;
		symmetricLU (P, M);
		if (P. size () < n) 
			return false;

		typedef typename Matrix::Field::Element Int;
		std::vector<Int> D(n);
		semiD(D, M);

		//std::cout << "All principal minors are: [";
		//for (int i = 0; i < n; ++ i)
		//	std::cout << D[i] << ", ";
		//std::cout << "]\n";

		if (allPos(D)) return true;
		else return false;
	}	
	

	template <class Matrix>
	static bool isPosDef (const Matrix& M, const Minpoly_Method& meth) {

		typedef typename Matrix::Field::Element Int;
		typedef std::vector<Int> Poly;
		Poly p;
		minpoly (p, M);
		typename Poly::reverse_iterator p_p;
		typename Matrix::Field R = M. field();
		bool flip = false;
		for (p_p = p .rbegin(); p_p != p. rend(); ++ p_p) {
			if (flip)
				R. negin(*p_p);
			flip = 1 - flip;
		}

		if(allPos(p)) return true;
		else return false;
	}

	
	template <class Matrix>
	static bool isPosSemiDef (const Matrix& M, const BLAS_LPM_Method& meth) {
		RandomPrimeIterator::setSeed(time(0));
		size_t n = M. rowdim();
		std::vector<int> P;
		size_t r = rank_random (M);
		//std::clog << "Rank:= " << r << std::endl;
		if (r == 0) 
			return true;
		symmetricLU (P, M);
		if (P. size () < r)
			return false;

		typedef typename Matrix::Field::Element Int;
		std::vector<Int> D(P.size());

		typename Matrix::Field R = M. field();

		//std::cout << "Begin semiD:\n";
		if(P. size() == n) 
			semiD(D, M);
		else {
			Matrix PM (R, P.size(), P.size());
			typename Matrix::RowIterator cur_r; int j = 0;
			for (cur_r = PM. rowBegin(); cur_r != PM. rowEnd(); ++ cur_r, ++j) {
				typename Matrix::ConstRowIterator m_r = M. rowBegin() + P[j];
				for (size_t k = 0; k < P.size(); ++ k) 
					R. assign (cur_r -> operator[] (k),
								m_r -> operator[] (P[k]));
			}
			semiD (D, PM);
		}

		//std::cout << "End semiD:\n";

		if (allPos(D)) return true;
		else return false;
	}	

	template <class Matrix>
	static bool isPosSemiDef (const Matrix& M, const Minpoly_Method& meth) {

		typedef typename Matrix::Field::Element Int;
		typedef std::vector<Int> Poly;
		Poly p;
		minpoly (p, M);
		typename Poly::reverse_iterator p_p;
		typename Matrix::Field R = M. field();
		bool flip = false;
		for (p_p = p .rbegin(); p_p != p. rend(); ++ p_p) {
			if (flip)
				R. negin(*p_p);
			flip = 1 - flip;
		}

		if(allNonNeg(p)) return true;
		else return false;
	}

private:

	template <class Vector>
	static bool allPos (const Vector& v) {
		
		typename Vector::const_iterator p;
		for (p = v. begin(); p != v. end(); ++ p)
			if (*p <= 0)
				return false;

		return true;
	}

	template <class Vector>
	static bool allNonNeg (const Vector& v) {
		
		typename Vector::const_iterator p;
		for (p = v. begin(); p != v. end(); ++ p)
			if (*p < 0)
				return false;

		return true;
	}

	/* Compute the equivalent diagonal matrix
	 * ie. with the same signature
	 * Assume M is non-singular and symmetric with generic rank profile
	 */

	template <class Matrix, class Vector>
	static Vector& semiD (Vector& out, const Matrix& M) {
		
		//std::cout << "Debug begin with input matrix:\n";
		//M. write (std::cout);
		typedef typename Matrix::Field Ring;
		typedef typename Ring::Element Integer;
		typedef Modular<double> Field;
		typedef Field::Element Element;

		size_t n = M. rowdim();
			
		integer mmodulus;
		FieldTraits<Field>::maxModulus(mmodulus);
		long bit1 = (long) floor (log((double)mmodulus)/M_LN2);
		long bit2 = (long) floor (log(sqrt(double(4503599627370496LL/n)))/M_LN2);
		RandomPrimeIterator primeg(bit1 < bit2 ? bit1 : bit2); 

		Field::Element* FA = new Field::Element[n*n];
		size_t* P= new size_t[n], *PQ = new size_t[n];
		size_t* P_p, * PQ_p;

		Field::Element* p; Field::Element tmp;
		EarlyMultipCRA< Field > cra(3UL);

		Integer m = 1;
		std::vector<Field::Element> v(n);
		size_t j = 0;
		Field K2;
		bool faithful = true;
		typename Matrix::ConstRawIterator raw_p;

		do {
		// get a prime. 
		// Compute mod that prime. Accumulate into v with CRA. 
		++primeg ; while(cra.noncoprime(*primeg)) ++primeg; 
		Field K1(*primeg); 
		K2 = K1;

		//clog << "Computing blackbox matrix mod " << prime;
		for (p = FA, raw_p = M. rawBegin(); p != FA + (n*n); ++ p, ++ raw_p)
		  K1. init (*p, *raw_p);

		//clog << "\rComputing lup mod " << prime << ". ";
		FFPACK::LUdivine(K1, FFLAS::FflasNonUnit, FFLAS::FflasNoTrans, n, n, FA, n, P, PQ, FFPACK::FfpackLQUP);

		faithful = true;
		for ( j = 0, P_p = P, PQ_p = PQ; j < n; ++ j, ++ P_p, ++ PQ_p) 
		  if ((*P_p != j) || (*PQ_p != j))  {
		    faithful = false;
		    break;
		  }

		} while(! faithful);
		K2. init (tmp, 1UL);

		typename std::vector<Field::Element>::iterator vp;
		for (j = 0, vp = v.begin(); vp != v.end(); ++j, ++vp) {
		  K2.mulin(tmp, *(FA + (j * n + j)));
		  K2.assign(*vp, tmp);
		}
		cra. initialize(K2, v); 

		while (! cra.terminated() ){
			// get a prime. 
		   ++primeg; while(cra.noncoprime(*primeg)) ++primeg; 
		  Field K(*primeg); 
		  //clog << "Computing blackbox matrix mod " << prime;
		  for (p = FA, raw_p = M. rawBegin(); p != FA + (n*n); ++ p, ++ raw_p)
		    K. init (*p, *raw_p);
		  
		  //clog << "\rComputing lup mod " << prime << ". ";
		  FFPACK::LUdivine(K, FFLAS::FflasNonUnit, FFLAS::FflasNoTrans, n, n, FA, n, P, PQ, FFPACK::FfpackLQUP);
		  
		  faithful = true;
		  for ( j = 0, P_p = P, PQ_p = PQ; j < n; ++ j, ++ P_p, ++ PQ_p) 
		    if ((*P_p != j) || (*PQ_p != j))  {
		      faithful = false;
		      break;
		    }
		  
		  if (!faithful) {
		    //std::cout << "Not a faithful prime\n";
		    continue;
		  }
		  
		  K. init (tmp, 1UL);

		  for (j = 0, vp = v.begin(); vp != v.end(); ++j, ++vp) {
		    K.mulin(tmp, *(FA + (j * n + j)));
		    K.assign(*vp, tmp);
		  }
// 		  std::cout << "Faithful image:[";
// 		  for (int l = 0; l < v. size(); ++ l)
// 		  std::cout << v[l] << ", ";
// 		  std::cout << "]\n";
		  cra. progress(K, v); 
		}
		
		delete[] FA;
		delete[] P;
		delete[] PQ; 
		//std::cout << "Compute the final answer.\n";
		cra.result(out);
		return out;
	}

	//only works with symmetric integer matrix
	// return a permutation matrix which is represented as a vector, such that
	// all principal of PAP^T are non-zero, up to a maximal.
	template <class Vector, class Matrix>
	static Vector& symmetricLU (Vector& v, const Matrix& IM) {

		typedef Modular<int32> Field;
		typedef Field::Element Element;
		typedef DenseMatrix<Field> FMatrix;
		RandomPrimeIterator primeg(20);
		Field F (*primeg);
		FMatrix* FM;
		//std::cout << "Random prime " << p << "\n";
		
		Element zero; F. init (zero, 0);
		MatrixHom::map (FM, IM, F);
		VectorDomain<Field> VD(F);
		FMatrix& M = *FM;

		//typename FMatrix::RowIterator cur_r, tmp_r;
		typedef FMatrix::Row Row;
		//the index is 0-based.
		int i = 0;
		int n = M. rowdim();
		std::vector<int> P(n);

		for (i = 0; i < n; ++ i)
			P[i] = i;
		
		//M. write(std::cout);
		for (i = 0; i < n; ++ i) {
			//std::cout << "i= " << i << "\n";
			int j;
			//find a pivot
			for (j = i; j < n; ++ j) {
				if (!F. isZero(M[j][j])) break;
			}

			//no piviot 
			if (j == n) break;

			// a pivot
			if (j != i) {
				VD. swap (*(M. colBegin() + j), *(M. colBegin() + i));
				VD. swap (*(M. rowBegin() + j), *(M. rowBegin() + i));
			}
			//std::cout << "Pivot= " << j << '\n';
			//M. write(std::cout);

			P[i] = j;
			Element tmp;
			F. inv (tmp, M[i][i]);
			F. negin(tmp);
			VD. mulin(*(M. rowBegin() + i), tmp);
			//M. write(std::cout);
			
			for (j = i + 1; j < n; ++ j) {
				F. assign (tmp,  M[j][i]);
				VD. axpyin (*(M. rowBegin() + j), tmp,
							*(M. rowBegin() + i));
			}

			//not necessary
			//M. write(std::cout);
			for (j = i + 1; j < n; ++ j)
				F. assign (M[i][j], zero);
		}

		delete FM;

		v. resize (n);
		std::vector<int>::iterator i_p; int j;
		for (i_p = v. begin(), j = 0; i_p != v. end(); ++ i_p, ++ j)
			*i_p = j;

		for (j = 0; j < i; ++ j) {
			if (j != P[j])
				std::swap (v[j], v[P[j]]);
		}

		v. resize (i);

		//std::cout << "Pseud-rank: " << i << "\n[";
		//for (i_p = v. begin(); i_p != v. end(); ++ i_p)
		//	std::cout << *i_p << ", ";
		//std::cout << "]\n";

		return v;
	}

	// This assumes Matrix is DenseMatrix 
	// (that it's rawiterator will go thru n^2 values row by row.)
	template <class Matrix>
	static long rank_random (const Matrix& M) {

		typedef typename Matrix::Field Ring;
		typedef typename Ring::Element Integer;
		typedef Modular<double> Field;
		typedef Field::Element Element;

		int n = M. rowdim();
			
		integer mmodulus;
		FieldTraits<Field>::maxModulus(mmodulus);
		long bit1 = (long) floor (log((double)mmodulus)/M_LN2);
		long bit2 = (long) floor (log(sqrt(double(4503599627370496LL/n)))/M_LN2);
		RandomPrimeIterator primeg(bit1 < bit2 ? bit1 : bit2); 

		Field::Element* FA = new Field::Element[n*n], *p;

		// get a prime. 
		// Compute the rank mod that prime. Accumulate into v with CRA. 
		Field K(*primeg); 

		typename Matrix::ConstRawIterator raw_p;
		for (p = FA, raw_p = M. rawBegin(); p != FA + (n*n); ++ p, ++ raw_p)
			K. init (*p, *raw_p);

		long r = FFPACK::Rank( K, n, n, FA, n);

		delete[] FA;
		return r;

	}
}; // end of class Signature

} //end of namespace LinBox