/usr/include/linbox/blackbox/block-hankel.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/blackbox/block-hankel.h
* Copyright (C) 2005 Pascal Giorgi
*
* Written by Pascal Giorgi pgiorgi@uwaterlo.ca
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef __BLOCK_HANKEL_H
#define __BLOCK_HANKEL_H
#include <vector>
#include <linbox/matrix/blas-matrix.h>
#include <linbox/vector/vector-domain.h>
#include <linbox/algorithms/blas-domain.h>
#include <linbox/util/debug.h>
//#define BHANKEL_TIMER
namespace LinBox {
class BlockHankelTag {
public:
typedef enum{low,up,plain} shape;
};
// note that P is done as a mirror
// here we compute a^d.P(1/a^d) where d is the degree of P
template<class Field>
void MatPolyHornerEval (const Field &F,
BlasMatrix<typename Field::Element> &R,
const std::vector<BlasMatrix<typename Field::Element> > &P,
const typename Field::Element &a)
{
R= P[0];
typename BlasMatrix<typename Field::Element>::RawIterator it_R;
typename BlasMatrix<typename Field::Element>::ConstRawIterator it_P;
for (size_t k=1; k<P.size(); ++k){
it_R = R.rawBegin();
it_P = P[k].rawBegin();
for (;it_R != R.rawEnd(); ++it_R, ++it_P){
F.mulin(*it_R, a);
F.addin(*it_R, *it_P);
}
}
}
// P is done normally
template<class Field>
void VectHornelEval (const Field &F,
std::vector<typename Field::Element> &E,
const std::vector<typename Field::Element> &P,
size_t block,
const typename Field::Element &a)
{
linbox_check((P.size()% block) == 0);
E.resize(block);
size_t numblock = P.size()/block;
size_t idx;
for (size_t i=0; i<block;++i)
F.assign(E[i], P[P.size()-block+i]);
for (int i=numblock-2; i>=0;--i)
for (size_t j= block*i; j< block*(i+1); ++j){
idx= j%block;
F.mulin(E[idx], a);
F.addin(E[idx], P[j]);
}
}
template<class Field>
void BlockHankelEvaluation(const Field &F,
std::vector<BlasMatrix<typename Field::Element> > &E,
const std::vector<BlasMatrix<typename Field::Element> > &P,
size_t k)
{
// do the evaluation of the Block Hankel Matrix using Horner Rules
// at k differents points (0,1,2,..,k-1)
E.resize(k);
E[0]=P.back();
typename Field::Element a, one;
F.init(one,1);
F.assign(a,one);
for (size_t i=1;i<k;++i){
MatPolyHornerEval(F, E[i], P, a);
F.addin(a, one);
}
}
template<class Field>
void BHVectorEvaluation(const Field &F,
std::vector<std::vector<typename Field::Element> > &E,
const std::vector<typename Field::Element> &P,
size_t block)
{
size_t k=E.size();
E[0]=std::vector<typename Field::Element> (P.begin(), P.begin()+block);
typename Field::Element a, one;
F.init(one,1);
F.assign(a,one);
for (size_t i=1;i<k;++i){
VectHornelEval (F, E[i], P, block, a);
F.addin(a, one);
}
}
// compute the lagrange polynomial with k points (0,1,2,..k-1)
template <class Field>
void BHVectorLagrangeCoeff(const Field &F,
std::vector<std::vector<typename Field::Element> > &P,
size_t k)
{
typename Field::Element one,zero, a;
F.init(one,1);F.init(zero,0);
F.init(a,0);
// compute L:= (x)(x-1)(x-2)(x-3)...(x-k+1) = a1x+a2x^2+...+a(k-1)x^(k-1)
std::list<typename Field::Element> L(2);
F.assign(L.front(), zero);
F.assign(*(++L.begin()), one);
for (size_t i=1;i<k;++i){
F.subin(a, one);
L.push_front(zero);
typename std::list<typename Field::Element>::iterator it_next = L.begin();it_next++;
typename std::list<typename Field::Element>::iterator it = L.begin();
for (;it_next != L.end();++it, ++it_next)
F.axpyin(*it, a, *it_next);
}
// compute P[i]:= L/(x-i)
P[0]= std::vector<typename Field::Element>(++L.begin(), L.end());
size_t deg=L.size();
F.init(a,0);
for (size_t i=1;i<k;++i){
F.addin(a,one);
P[i].resize(deg-1);
typename std::list<typename Field::Element>::const_reverse_iterator rit=L.rbegin();
F.assign(P[i][deg-2],*rit);
++rit;
for (int j=deg-3; j>=0;--j, ++rit)
F.axpy(P[i][j], a, P[i][j+1], *rit);
}
// compute P[i]= P[i] / Prod((i-j), j<>i)
typename Field::Element prod, ui, uj, tmp;
F.init(ui,-1);
for (size_t i=0;i<k;++i){
F.assign(prod,one);
F.addin(ui,one);
F.assign(uj,zero);
for (size_t j=0;j<k;++j){
if (j != i){
F.sub(tmp,ui,uj);
F.mulin(prod,tmp);
}
F.addin(uj,one);
}
F.invin(prod);
//std::cout<<"coeff: ";F.write(std::cout, prod)<<"\n";
for (size_t l=0;l<P[i].size();++l)
F.mulin(P[i][l], prod);
}
}
template<class Field>
void BHVectorInterpolation(const Field &F,
std::vector<typename Field::Element> &x,
const std::vector<std::vector<typename Field::Element> > &E,
const std::vector<std::vector<typename Field::Element> > &P,
size_t shift)
{
size_t block = E[0].size();
size_t numblock= x.size()/block;
std::vector<typename Field::Element> acc(block);
VectorDomain<Field> VD(F);
for (size_t i=shift;i<numblock+shift;++i){
VD.mul(acc, E[0], P[0][i]);//F.write(std::cout,P[0][i])<<"*",VD.write(std::cout, E[0]);
for (size_t j=1;j<E.size();++j){
//F.write(std::cout,P[j][i])<<"*",VD.write(std::cout, E[j]);
VD.axpyin(acc, P[j][i], E[j]);
}
//VD.write(std::cout,acc)<<"\n";;
for (size_t j=0;j<block;++j)
F.assign(x[x.size()-((i-shift+1)*block) +j], acc[j]);
}
}
template <class _Field>
class BlockHankel {
public:
typedef _Field Field;
typedef typename Field::Element Element;
BlockHankel() {}
// Constructor from a stl vector of BlasMatrix reprenting
// all different elements in the Hankel representation
// order of element will depend on first column and/or last row
// (plain->[column|row]; up -> [column]; low -> [row];)
BlockHankel (Field &F, const std::vector<BlasMatrix<Element> > &H, BlockHankelTag::shape s= BlockHankelTag::plain)
: _field(F), _BMD(F)
{
linbox_check( H.begin()->rowdim() != H.begin()->coldim());
switch (s) {
case BlockHankelTag::plain :
{
linbox_check(H.size()&0x1);
_deg= H.size();
_block = H.begin()->coldim();
_rowblock= ((_deg+1)>>1);
_colblock= _rowblock;
_row = _rowblock*_block;
_col = _row;
_shape = s;
BlockHankelEvaluation( _field, _matpoly, H, _deg+_colblock-1);
}
break;
case BlockHankelTag::up :
{
_deg = H.size();
_block = H.begin()->coldim();
_rowblock= _deg;
_colblock= _rowblock;
_row = _rowblock*_block;
_col = _row;
_shape = s;
BlockHankelEvaluation( _field, _matpoly, H, _deg+_colblock-1);
}
break;
case BlockHankelTag::low :
{
_deg = H.size();
_block = H.begin()->coldim();
_rowblock= _deg;
_colblock= _rowblock;
_row = _rowblock*_block;
_col = _row;
_shape = s;
BlockHankelEvaluation( _field, _matpoly, H, _deg+_colblock-1);
}
break;
}
_numpoints = _deg+_colblock-1;
integer prime;
F.characteristic(prime);
if (integer(_numpoints) > prime){
std::cout<<"LinBox ERROR: prime ("<<prime<<") is too small for number of block ("<< _numpoints <<") in block Hankel blackbox\n";
throw LinboxError("LinBox ERROR: prime too small in block Hankel blackbox\n");
}
_vecpoly.resize(_numpoints, std::vector<Element>(_block));
_veclagrange.resize(_numpoints);
BHVectorLagrangeCoeff(_field, _veclagrange, _numpoints);
_vander = BlasMatrix<Element> (_numpoints,_numpoints);
_inv_vander = BlasMatrix<Element> (_numpoints,_numpoints);
std::vector<Element> points(_numpoints);
Element one;
F.init(one,1);
for (size_t i=0;i<_numpoints;++i){
F.init(points[i],i);
_vander.setEntry(i,0, one);
}
for (size_t j=1;j<_numpoints; ++j){
for (size_t i=0;i<_numpoints;++i){
F.mul(_vander.refEntry(i,j), _vander.refEntry(i,j-1), points[i]);
}
}
_BMD.inv(_inv_vander, _vander);
_partial_vander= BlasMatrix<Element> (_vander, 0, 0, _numpoints, _colblock);
size_t shift=_colblock-1;
if ( _shape == BlockHankelTag::up)
shift=0;
_partial_inv_vander= BlasMatrix<Element> (_inv_vander, shift, 0, _colblock, _numpoints);
_x = BlasMatrix<Element> (_numpoints, _block);
_y = BlasMatrix<Element> (_colblock, _block);
_Tapply.clear();
_Teval.clear();
_Tinterp.clear();
}
// Copy construtor
BlockHankel (const BlockHankel<Field> &H) : _field(H._field()), _matpoly (H._matpoly), _deg(H._deg),
_row(H._row), _col(H._col), _rowblock(H._rowblock), _colblock(H._colblock), _block(H._block), _shape(H._shape) {}
// get the column dimension
size_t coldim() const {return _col;}
// get the row dimension
size_t rowdim() const {return _row;}
// get the block dimension
size_t blockdim() const {return _block;}
// apply the blackbox to a vector
template<class Vector1, class Vector2>
Vector1& apply(Vector1 &x, const Vector2 &y) const {
linbox_check(_coldim == y.size());
linbox_check(_rowdim == x.size());
BlasMatrixDomain<Field> BMD(_field);
#ifdef BHANKEL_TIMER
_chrono.clear();
_chrono.start();
#endif
// evaluation of the vector seen as a vector polynomial in
//BHVectorEvaluation(_field, _vecpoly, y, _block);
for (size_t i=0;i<_colblock;++i)
for (size_t j=0;j<_block;++j)
_y.setEntry(i,j, y[i*_block+j]);
_BMD.mul(_x, _partial_vander, _y);
for (size_t i=0;i<_numpoints;++i){
for (size_t j=0;j<_block; ++j)
_field.assign(_vecpoly[i][j], _x.getEntry(i,j));
}
#ifdef BHANKEL_TIMER
_chrono.stop();
_Teval+=_chrono;
_chrono.clear();
_chrono.start();
#endif
std::vector<std::vector<Element> > x_vecpoly(_vecpoly.size(), std::vector<Element>(_block));
// perform the apply componentwise
for (size_t i=0;i<_vecpoly.size();++i)
BMD.mul(x_vecpoly[i], _matpoly[i], _vecpoly[i]);
#ifdef BHANKEL_TIMER
_chrono.stop();
_Tapply+=_chrono;
_chrono.clear();
_chrono.start();
#endif
// get the result according to the right part of the polynomial
//size_t shift=_colblock-1;
//if ( _shape == BlockHankelTag::up)
// shift=0;
// interpolation to get the result vector
//BHVectorInterpolation(_field, x, x_vecpoly, _veclagrange, shift);
for (size_t i=0;i<_numpoints;++i)
for (size_t j=0;j<_block;++j)
_x.setEntry(i,j, x_vecpoly[i][j]);
_BMD.mul(_y, _partial_inv_vander, _x);
for (size_t i=0;i<_colblock;++i)
for (size_t j=0;j<_block;++j)
_field.assign( x[x.size() - (i+1)*_block +j], _y.getEntry(i,j));
#ifdef BHANKEL_TIMER
_chrono.stop();
_Tinterp +=_chrono;
#endif
return x;
}
~BlockHankel() {}
// apply the transposed of the blackbox to a vector
template<class Vector1, class Vector2>
Vector1& applyTranspose(Vector1 &x, const Vector2 &y) const {
return apply(x,y);
}
private:
Field _field;
std::vector<BlasMatrix<Element> > _matpoly;
mutable std::vector<std::vector<Element> > _vecpoly;
std::vector<std::vector<Element> > _veclagrange;
BlasMatrix<Element> _vander;
BlasMatrix<Element> _partial_vander;
BlasMatrix<Element> _inv_vander;
BlasMatrix<Element> _partial_inv_vander;
mutable BlasMatrix<Element> _y;
mutable BlasMatrix<Element> _x;
BlasMatrixDomain<Field> _BMD;
size_t _deg;
size_t _row;
size_t _col;
size_t _rowblock;
size_t _colblock;
size_t _block;
size_t _numpoints;
BlockHankelTag::shape _shape;
mutable Timer _Tapply, _Teval, _Tinterp, _chrono;
};
} // end of namespace LinBox
#endif
|