/usr/include/linbox/blackbox/butterfly.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/blackbox/butterfly.h
* Copyright (C) 1999-2001 William J Turner,
* 2001 Bradford Hovinen
*
* Written by William J Turner <wjturner@math.ncsu.edu>,
* Bradford Hovinen <hovinen@cis.udel.edu>
*
* -----------------------------------------------------------
* 2002-09-26 Bradford Hovinen <bghovinen@math.uwaterloo.ca>
*
* Refactoring: The switch object now only contains the information necessary
* for a single 2x2 block. The butterfly black box maintains a vector of switch
* objects that it keeps in parallel with its vector of indices. There is a new
* lightweight class, called a SwitchFactory, that constructs switches on the
* fly. It is defined individually for each switch type, and a instance thereof
* is passed to the butterfly, which then uses it to construct its vector.
*
* This eliminates two problems: first, because switch objects are constructed
* by the butterfly itself, there is no need to know a priori the length of the
* vector of indices. Second, the switch object itself becomes simpler, as it
* need only be responsible for a single 2x2 block.
*
* -----------------------------------------------------------
*
* See COPYING for license information
*/
#ifndef __BUTTERFLY_H
#define __BUTTERFLY_H
#include <vector>
#include <linbox/blackbox/blackbox-interface.h>
// Namespace in which all LinBox library code resides
namespace LinBox
{
/** @name Butterfly
* @brief Butterfly preconditioner and supporting function
*/
//@{
//
/** \brief Switching Network based BlackBox Matrix. A good preconditioner.
* Implements butterfly switching network on a LinBox vector
* as a black box matrix through the use of a switch object.
*
* This is a blackbox matrix object, and it implements all
* purely virtual methods of the abstract base class.
* See \ref{BlackboxArchetype} for the specification of these methods.
*
* This matrix requires a dense vector to be used. Sparse vectors must
* somehow be converted to dense vectors before this matrix may
* be applied to them.
*
* @param Vector LinBox dense vector type
* @param Switch switch object type
\ingroup blackbox
*/
template <class _Field, class Switch>
class Butterfly : public BlackboxInterface
{
public:
typedef _Field Field;
typedef typename Field::Element Element;
/** Constructor from an integer and a switch object.
* The switch object is an object that is applied
* to two references to elements to switch them. It must have both
* an apply and an applyTranspose method.
* It must contain all information needed by the switch other
* than the elements themselves. This includes any random
* numbers or sequences of values. It must also be able to
* be applied as many times as needed. In particular, it must be able
* to create new random elements or repeat a stored sequence
* of values.
* This is not required by the abstract base class.
* @param n integer size of vectors to be applied to
* @param S switch predicate object object
*/
Butterfly (const Field &F, size_t n, typename Switch::Factory &factory);
/* Destructor. */
~Butterfly () {}
/*- Application of BlackBox matrix.
* y = A*x.
* Requires one vector conforming to the \ref{LinBox}
* vector {@link Archetypes archetype}.
* Required by abstract base class.
* For this matrix, this involves applying each switch in order to the
* input vector.
* @return reference to vector y containing output (after switching).
* @param x constant reference to vector to contain input
* (before switching)
*/
template<class OutVector, class InVector>
OutVector& apply (OutVector& y, const InVector& x) const;
/*- Application of BlackBox matrix transpose.
* y = transpose (A)*x.
* Requires one vector conforming to the \ref{LinBox}
* vector {@link Archetypes archetype}.
* Required by abstract base class.
* For this matrix, this involves applying the transpose of each switch
* to the input vector in the reverse order of the apply function.
* @return reference to vector y containing output (after switching).
* @param x constant reference to vector to contain input
* (before switching)
*/
template<class OutVector, class InVector>
OutVector& applyTranspose (OutVector& y, const InVector& x) const;
template<typename _Tp1, typename _Sw1 = Switch>
struct rebind
{ typedef Butterfly<_Tp1, _Sw1> other; };
/*- Retreive row dimensions of BlackBox matrix.
* This may be needed for applying preconditioners.
* Required by abstract base class.
* @return integer number of rows of black box matrix.
*/
size_t rowdim () const
{ return _n; }
/*- Retreive column dimensions of BlackBox matrix.
* Required by abstract base class.
* @return integer number of columns of black box matrix.
*/
size_t coldim () const
{ return _n; }
const Field& field() const {return _F;}
private:
// Field over which we are working
const Field _F;
VectorDomain<Field> _VD;
// Number of rows and columns of square matrix.
size_t _n;
// Vectors of sizes of sub-groups and number of levels in each
// These may not need to be stored in general.
// They may only be used in the constructor
std::vector<size_t> _n_vec, _l_vec;
// Vector of index pairs. These are the indices to be switched with
// a given switch.
std::vector< std::pair< size_t, size_t > > _indices;
// Vector of switches
std::vector<Switch> _switches;
// Build the vector of indices
void buildIndices ();
}; // template <class Field, class Vector> class Butterfly
// Implementation of methods
template <class Field, class Switch>
inline Butterfly<Field, Switch>::Butterfly (const Field &F, size_t n, typename Switch::Factory &factory)
: _F (F), _VD (F), _n (n)
{
buildIndices ();
for (unsigned int i = 0; i < _indices.size (); ++i)
_switches.push_back (factory.makeSwitch ());
}
template <class Field, class Switch>
template<class OutVector, class InVector>
inline OutVector& Butterfly<Field, Switch>::apply (OutVector& y, const InVector& x) const
{
std::vector< std::pair<size_t, size_t> >::const_iterator idx_iter = _indices.begin ();
typename std::vector<Switch>::const_iterator switch_iter = _switches.begin ();
_VD.copy (y, x);
for (; idx_iter != _indices.end (); ++idx_iter, ++switch_iter)
switch_iter->apply (_F, y[idx_iter->first], y[idx_iter->second]);
return y;
}
template <class Field, class Switch>
template <class OutVector, class InVector>
inline OutVector& Butterfly<Field, Switch>::applyTranspose (OutVector& y, const InVector& x) const
{
std::vector< std::pair<size_t, size_t> >::const_reverse_iterator idx_iter = _indices.rbegin ();
typename std::vector<Switch>::const_reverse_iterator switch_iter = _switches.rbegin ();
_VD.copy (y, x);
for (; idx_iter != _indices.rend (); ++idx_iter, ++switch_iter)
switch_iter->applyTranspose (_F, y[idx_iter->first], y[idx_iter->second]);
return y;
}
template <class Field, class Switch>
void Butterfly<Field, Switch>::buildIndices ()
{
for (size_t value (_n), l_p (0), n_p (1);
n_p != 0;
value >>= 1, l_p++, n_p <<= 1)
{
if (value & 1) {
_l_vec.push_back (l_p);
_n_vec.push_back (n_p);
}
}
// Create vector of indices to switch
size_t n_p, l_p; // size of group and number of levels in group
size_t level (0), difference (1); // track levels done for powers of 2
// Vector containing indices for last level of last power of 2.
std::vector< std::pair< size_t, size_t > > p_ind;
// Vector and iterator used for computing p_ind.
std::vector< std::pair< size_t, size_t > > temp_ind;
std::vector< std::pair< size_t, size_t > >::iterator iter;
// Loop over sub-groups of powers of two
for (size_t p (0), start_index (0);
p < _n_vec.size ();
p++, start_index += n_p)
{
// update size
n_p = _n_vec[p];
l_p = _l_vec[p];
// loop over levels of sub-group network
for ( ; level < l_p; level++, difference <<= 1) {
// Create
temp_ind = p_ind;
// the second sub group is a shift of the first
for (iter = temp_ind.begin (); iter != temp_ind.end (); iter++) {
iter->first += difference;
iter->second += difference;
}
// add the second group to the first
p_ind.insert (p_ind.end (), temp_ind.begin (), temp_ind.end ());
// add switches to mix the two sub groups
temp_ind = std::vector< std::pair<size_t, size_t> >
(difference, std::pair<size_t, size_t> (0, 0));
size_t i = 0;
for (iter = temp_ind.begin (); iter != temp_ind.end (); i++, iter++) {
iter->first += i;
iter->second += i + difference;
}
// add the combining group to the first and second
p_ind.insert (p_ind.end (), temp_ind.begin (), temp_ind.end ());
}
// Add this level to total list of indices and correct starting point
temp_ind = p_ind;
for (iter = temp_ind.begin (); iter != temp_ind.end (); iter++) {
iter->first += start_index;
iter->second += start_index;
}
_indices.insert (_indices.end (), temp_ind.begin (), temp_ind.end ());
// Combine everything so far
temp_ind = std::vector< std::pair<size_t, size_t> > (start_index, std::pair<size_t, size_t> (0, 0));
iter = temp_ind.begin ();
for (size_t index = 0; index < start_index; index++, iter++) {
iter->first = index;
iter->second += index + n_p;
}
_indices.insert (_indices.end (), temp_ind.begin (), temp_ind.end ());
}
}
/** A function used with Butterfly Blackbox Matrices.
* This function takes an STL vector x of booleans, and returns
* a vector y of booleans such that setting the switches marked
* by true flags in y to be on (or to swap elements) the true
* elements x will be switched to a given contiguous block
* through the use of a Butterfly switching network.
* The integer parameter j marks where this block is to begin.
* If x has r true elements, the Butterfly switching network will place
* these elements in a contiguous block starting at j and ending at
* j + r - 1.
* Wrap around shall be considered to preserve contiguity.
* The value of j is defaulted to be zero, and it is only allowed to
* be non-zero is the size of x is a power of 2.
* @return vector of booleans for setting switches
* @param x vector of booleans marking elements to switch into
* contiguous block
* @param j offset of contiguous block
* @param log reference to ostream for logging
*/
std::vector<bool> setButterfly (const std::vector<bool>& x,
size_t j = 0)
{
size_t n = x.size ();
commentator.start ("Setting butterfly switches", "setButterfly");
std::ostream &report = commentator.report (Commentator::LEVEL_NORMAL, INTERNAL_DESCRIPTION);
report << "Called set switches with vector of size " << n
<< " and offset " << j << std::endl;
// return empty vector if zero or one elements in x because
// no switching will be done.
if (x.size () <= 1) {
commentator.indent (report);
report << "No switches needed. Returning with empty vector." << std::endl;
commentator.stop ("done");
return std::vector<bool> ();
}
commentator.indent (report);
report << "Counting the number of switches that exist." << std::endl;
// break inputs into groups of size powers of 2.
// calculate size of groups, and powers of 2 that give sizes
// store these values in vectors n and l, respectively
std::vector<size_t> l_vec, n_vec;
for (size_t value (n), l_p (0), n_p (1);
n_p != 0;
value >>= 1, l_p++, n_p <<= 1)
{
commentator.indent (report);
report << " looping at value = " << value
<< ", l_p = " << l_p
<< ", n_p = " << n_p << std::endl;
if (value & 1) {
l_vec.push_back (l_p);
n_vec.push_back (n_p);
commentator.indent (report);
report << " inserted value = " << value
<< ", l_p = " << l_p
<< ", n_p = " << n_p << std::endl;
}
}
// Calculate total number of switches required
size_t s (0);
for (size_t ii = 0; ii < n_vec.size (); ii++)
s += n_vec[ii] * l_vec[ii] / 2;
for (size_t ii = 0; ii < n_vec.size () - 1; ii++)
for (size_t jj = 0; jj <= ii; jj++)
s += n_vec[jj];
commentator.indent (report);
report << "There are a total of " << s << " switches" << std::endl;
// Set largest power of 2 in decomposition of n = x.size ()
size_t n_p (*n_vec.rbegin ());
commentator.indent (report);
report << "Found largest power of 2 in decomposition of " << n
<< " as n_p = " << n_p << std::endl;
if ( (n != n_p) && (j != 0) ) {
commentator.indent (report);
report << "Non-zero offset " << j
<< " used with non-power size."
<< "Offset reset to zero." << std::endl;
j = 0;
} else
j %= n;
if (n == n_p) {
n_p /= 2; // >> is not portable!
commentator.indent (report);
report << "n = " << n << " is a power of two. "
<< "Resetting n_p to be half of n: n_p = " << n_p << std::endl;
}
// count true elements not in largest power of 2 block
size_t r_1(0);
for (std::vector<bool>::const_iterator iter = x.begin ();
iter != x.begin () + (n - n_p);
iter++)
if (*iter) r_1++;
// count total number of true elements in x.
size_t r (r_1);
for (std::vector<bool>::const_iterator iter = x.begin () + (n - n_p);
iter != x.end ();
iter++)
if (*iter) r++;
commentator.indent (report);
report << "The vector x will be broken into two sub-vectors,"
<< "x_1 = x[0,...," << n - n_p - 1 << "] and x_2 = x["
<< n - n_p << ",...," << n - 1 << "]."
<< "There are a total of " << r << " true Elements in x, "
<< r_1 << " of which occured in the first sub-vector."
<< "The output vector will have " << s << " entries and will"
<< "switch the true Elements of x into a contiguous block"
<< "[" << j << "," << j + r
<< ") = [" << j << "," << j + r - 1<< "]." << std::endl;
if (r == 0) {
commentator.indent (report);
report << "There are no true Elements in x, so the recursion is"
<< "being broken and a vector of false flags returned." << std::endl;
commentator.stop ("done");
return std::vector<bool> (s, false);
}
else if (r == n) {
commentator.indent (report);
report << "There are no false Elements in x, so the recursion is"
<< "being broken and a vector of false flags returned." << std::endl;
commentator.stop ("done");
return std::vector<bool> (s, false);
}
// Calculate where the true elements are supposed to end up
// Here, they will be in a contiguous block starting after the
// offset. s_1 are the true elements after the offset and in the first
// sub-group, s_2 are the ones in the second sub group, and s_3 are the
// elements that wrap around to the beginning. s_1 and s_3 cannot both
// be non-zero unless s_2 == n_p. (I.e., the second group is full.)
// Also, because for n != 2 n_p the offset is zero, in that case
// s_3 must be zero. Any of them may be zero if the corrsponding block
// is empty.
// s_2 is only used for tracing the program, so it is not always computed.
size_t s_1;
if (j < n - n_p) {
if (j + r < n - n_p)
s_1 = r;
else
s_1 = n - n_p - j;
} else
s_1 = 0;
size_t s_2 = 0;
if (commentator.isPrinted (Commentator::LEVEL_NORMAL, INTERNAL_DESCRIPTION)) {
if (j + r < n - n_p)
s_2 = 0;
else {
if (j + r < n)
s_2 = j + r;
else
s_2 = n;
if (j < n - n_p)
s_2 -= (n - n_p);
else
s_2 -= j;
}
}
size_t s_3 = ((j + r) > n) ? j + r - n : 0;
commentator.indent (report);
report << "The number of Elements in each of the three blocks of "
<< "true Elements in the end result are"
<< "s_1 = " << s_1
<< ", s_2 = " << s_2
<< ", and s_3 = " << s_3 << "." << std::endl;
// Create empty vector for output. y_temp is used to retrieve output
// from recursion before inserting into output.
std::vector<bool> y_1, y_2, y_3 = std::vector<bool> (n - n_p, false);
if ((s_1 + s_3) == r_1) {
commentator.indent (report);
report << "Case I: s_1 + s_3 == r_1 and s_2 == r - r_1."
<< "No Elements are moved between the two sub-vectors." << std::endl;
if (j < (n - n_p)) {
commentator.indent (report);
report << " A: j < (n - n_p). j_1 = j = " << j << ", j_2 = 0";
y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j);
y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), 0);
} else {
commentator.indent (report);
report << " A: j >= (n - n_p). j_1 = 0, j_2 = j - (n - n_p) = "
<< j - (n - n_p) << std::endl;
// This case cannot occur for n != 2*n_p because j != 0
y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), 0);
y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), j - (n - n_p));
}
}
else if ((s_1 + s_3) > r_1) {
commentator.indent (report);
report << "Case II: s_1 + s_3 > r_1 and s_2 < r - r_1."
<< "Elements are moved from the right sub-vector to the left." << std::endl;
// This means that s_2 < n_p, so either s_1 = 0 or s_3 = 0 (or both).
if (j < (n - n_p)) {
commentator.indent (report);
report << " A: j < (n - n_p). j_1 = j, j_2 = 2*n_p + j + r_1 - n = "
<< 2*n_p + j + r_1 - n << std::endl;
// In this case, s_1 > 0, so s_3 = 0, and wrap-around cannot occur.
y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j);
y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), 2*n_p + j + r_1 - n);
for (std::vector<bool>::iterator iter = (y_3.begin () + (j + r_1));
iter != (y_3.begin () + (n - n_p));
iter++)
*iter = true;
} else {
commentator.indent (report);
report << " A: j >= (n - n_p). j_1 = j + r - n - r_1 = "
<< j + r - n - r_1 << ", j_2 = j - (n - n_p) = "
<< j - (n - n_p) << std::endl;
// In this case, s_1 = 0, so s_3 >= 0, and wrap-around may occur.
// This case cannot occur for n != 2*n_p because j != 0.
y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j + r - n - r_1);
y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), j - (n - n_p));
for (std::vector<bool>::iterator iter = y_3.begin ();
iter != (y_3.begin () + (j + r - n - r_1));
iter++)
*iter = true;
}
}
else if ((s_1 + s_3) < r_1) {
commentator.indent (report);
report << "Case III: s_1 + s_3 < r_1 and s_2 > r - r_1."
<< "Elements are moved from the left sub-vector to the right." << std::endl;
// This case also means that s_1 + s_3 < n - n_p, or the contiguous
// block cannot encompass the entire first sub-vector. For this
// reason, this case is not considered when n != 2*n_p (when j = 0).
if (j < (n - n_p)) {
commentator.indent (report);
report << " A: j < (n - n_p). j_1 = j = " << j
<< ", j_2 = j + r_1 - n + n_p = " << j + r_1 - n + n_p << std::endl;
// In this case, s_1 > 0, so s_3 = 0, and wrap-around cannot occur.
y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j);
y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), j + r_1 - n + n_p);
for (std::vector<bool>::iterator iter = (y_3.begin () + s_3);
iter != (y_3.begin () + (j + r_1 - n + n_p));
iter++)
*iter = true;
} else {
commentator.indent (report);
report << " A: j >= (n - n_p). j_1 = j + r - n_p - r_1 = "
<< j + r - n_p - r_1 << ", j_2 = j - (n - n_p) = "
<< j - (n - n_p) << std::endl;
// In this case, s_1 = 0, so s_3 >= 0, and wrap-around may occur.
// This case cannot occur for n != 2*n_p because j != 0.
y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j + r - n_p - r_1);
y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), j - (n - n_p));
for (std::vector<bool>::iterator iter (y_3.begin () + (j + r - n_p - r_1));
iter != (y_3.begin () + (n - n_p));
iter++)
*iter = true;
}
}
// Create output vector.
std::vector<bool> y (y_1);
y.insert (y.end (), y_2.begin (), y_2.end ());
y.insert (y.end (), y_3.begin (), y_3.end ());
commentator.indent (report);
report << "The output vector for n = " << n << " has " << y.size ()
<< " entries."
<< " " << y_1.size () << " from the first sub-vector"
<< " " << y_2.size () << " from the second sub-vector"
<< " " << y_3.size () << " from recombining the two"
<< "And the output vector y is:"
<< "-------------------------- " << std::endl;
for (size_t i = 0; i < y.size (); i++) {
commentator.indent (report);
report << " " << i << ": " << y[i] << std::endl;
}
commentator.indent (report);
report << "-------------------------- " << std::endl;
commentator.stop ("done");
return y;
} // std::vector<bool> setButterfly (const std::vector<bool>& x, size_t j)
//@}
} // namespace LinBox
#endif // __BUTTERFLY_H
|