This file is indexed.

/usr/include/linbox/blackbox/butterfly.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */

/* linbox/blackbox/butterfly.h
 * Copyright (C) 1999-2001 William J Turner,
 *               2001 Bradford Hovinen
 *
 * Written by William J Turner <wjturner@math.ncsu.edu>,
 *            Bradford Hovinen <hovinen@cis.udel.edu>
 *
 * -----------------------------------------------------------
 * 2002-09-26  Bradford Hovinen  <bghovinen@math.uwaterloo.ca>
 *
 * Refactoring: The switch object now only contains the information necessary
 * for a single 2x2 block. The butterfly black box maintains a vector of switch
 * objects that it keeps in parallel with its vector of indices. There is a new
 * lightweight class, called a SwitchFactory, that constructs switches on the
 * fly. It is defined individually for each switch type, and a instance thereof
 * is passed to the butterfly, which then uses it to construct its vector.
 *
 * This eliminates two problems: first, because switch objects are constructed
 * by the butterfly itself, there is no need to know a priori the length of the
 * vector of indices. Second, the switch object itself becomes simpler, as it
 * need only be responsible for a single 2x2 block.
 *
 * -----------------------------------------------------------
 * 
 * See COPYING for license information
 */

#ifndef __BUTTERFLY_H
#define __BUTTERFLY_H

#include <vector>
#include <linbox/blackbox/blackbox-interface.h>


// Namespace in which all LinBox library code resides
namespace LinBox
{

/** @name Butterfly 
 * @brief Butterfly preconditioner and supporting function
 */
//@{
//
/** \brief Switching Network based BlackBox Matrix.  A good preconditioner.

 * Implements butterfly switching network on a LinBox vector
 * as a black box matrix through the use of a switch object.
 *
 * This is a blackbox matrix object, and it implements all
 * purely virtual methods of the abstract base class.
 * See \ref{BlackboxArchetype} for the specification of these methods.
 *
 * This matrix requires a dense vector to be used.  Sparse vectors must
 * somehow be converted to dense vectors before this matrix may
 * be applied to them.
 *
 * @param Vector LinBox dense vector type
 * @param Switch switch object type
\ingroup blackbox
 */
template <class _Field, class Switch>
class Butterfly : public BlackboxInterface
{
    public:
	typedef _Field Field;

	typedef typename Field::Element Element;

	/** Constructor from an integer and a switch object.
	 * The switch object is an object that is applied
	 * to two references to elements to switch them.  It must have both
	 * an apply and an applyTranspose method.
	 * It must contain all information needed by the switch other 
	 * than the elements themselves.  This includes any random
	 * numbers or sequences of values.  It must also be able to 
	 * be applied as many times as needed.  In particular, it must be able
	 * to create new random elements or repeat a stored sequence
	 * of values.
	 * This is not required by the abstract base class.
	 * @param n integer size of vectors to be applied to
	 * @param S switch predicate object object
	 */
	Butterfly (const Field &F, size_t n, typename Switch::Factory &factory);

	/* Destructor. */
	~Butterfly () {}


	/*- Application of BlackBox matrix.
	 * y = A*x.
	 * Requires one vector conforming to the \ref{LinBox}
	 * vector {@link Archetypes archetype}.
	 * Required by abstract base class.
	 * For this matrix, this involves applying each switch in order to the 
	 * input vector.
	 * @return reference to vector y containing output (after switching).
	 * @param  x constant reference to vector to contain input 
	 * 			(before switching)       
	*/

	template<class OutVector, class InVector>
	OutVector& apply (OutVector& y, const InVector& x) const;

	/*- Application of BlackBox matrix transpose.
	 * y = transpose (A)*x.
	 * Requires one vector conforming to the \ref{LinBox}
	 * vector {@link Archetypes archetype}.
	 * Required by abstract base class.
	 * For this matrix, this involves applying the transpose of each switch 
	 * to the input vector in the reverse order of the apply function.
	 * @return reference to vector y containing output (after switching).
	 * @param  x constant reference to vector to contain input 
	 * 			(before switching)
	 */
	template<class OutVector, class InVector>
	OutVector& applyTranspose (OutVector& y, const InVector& x) const;

    template<typename _Tp1, typename _Sw1 = Switch>
    struct rebind
    { typedef Butterfly<_Tp1, _Sw1> other; };


    

	/*- Retreive row dimensions of BlackBox matrix.
	 * This may be needed for applying preconditioners.
	 * Required by abstract base class.
	 * @return integer number of rows of black box matrix.
	 */
	size_t rowdim () const
		{ return _n; }
    
	/*- Retreive column dimensions of BlackBox matrix.
	 * Required by abstract base class.
	 * @return integer number of columns of black box matrix.
	 */
	size_t coldim () const
		{ return _n; }

	const Field& field() const {return _F;}

    private:

	// Field over which we are working
	const Field _F;
	VectorDomain<Field> _VD;

	// Number of rows and columns of square matrix.
	size_t _n;

	// Vectors of sizes of sub-groups and number of levels in each
	// These may not need to be stored in general.
	// They may only be used in the constructor
	std::vector<size_t> _n_vec, _l_vec;
   
	// Vector of index pairs.  These are the indices to be switched with
	// a given switch.
	std::vector< std::pair< size_t, size_t > > _indices;

	// Vector of switches
	std::vector<Switch> _switches;

	// Build the vector of indices
	void buildIndices ();
    
}; // template <class Field, class Vector> class Butterfly

// Implementation of methods

template <class Field, class Switch>
inline Butterfly<Field, Switch>::Butterfly (const Field &F, size_t n, typename Switch::Factory &factory)
	: _F (F), _VD (F), _n (n)
{
	buildIndices ();

	for (unsigned int i = 0; i < _indices.size (); ++i)
		_switches.push_back (factory.makeSwitch ());
}
  
template <class Field, class Switch>
template<class OutVector, class InVector>
inline OutVector& Butterfly<Field, Switch>::apply (OutVector& y, const InVector& x) const
{
	std::vector< std::pair<size_t, size_t> >::const_iterator idx_iter = _indices.begin ();
	typename std::vector<Switch>::const_iterator switch_iter = _switches.begin ();

	_VD.copy (y, x);

	for (; idx_iter != _indices.end (); ++idx_iter, ++switch_iter)
		switch_iter->apply (_F, y[idx_iter->first], y[idx_iter->second]);

	return y;
}

template <class Field, class Switch>
template <class OutVector, class InVector>
inline OutVector& Butterfly<Field, Switch>::applyTranspose (OutVector& y, const InVector& x) const
{
	std::vector< std::pair<size_t, size_t> >::const_reverse_iterator idx_iter = _indices.rbegin ();
	typename std::vector<Switch>::const_reverse_iterator switch_iter = _switches.rbegin ();

	_VD.copy (y, x);

	for (; idx_iter != _indices.rend (); ++idx_iter, ++switch_iter)
		switch_iter->applyTranspose (_F, y[idx_iter->first], y[idx_iter->second]);

	return y;
}

template <class Field, class Switch>
void Butterfly<Field, Switch>::buildIndices () 
{
	for (size_t value (_n), l_p (0), n_p (1); 
	     n_p != 0; 
	     value >>= 1, l_p++, n_p <<= 1)
	{
		if (value & 1) {
			_l_vec.push_back (l_p);
			_n_vec.push_back (n_p);      
		}
	}

	// Create vector of indices to switch
	size_t n_p, l_p;   	// size of group and number of levels in group
	size_t level (0), difference (1);	// track levels done for powers of 2

	// Vector containing indices for last level of last power of 2.
	std::vector< std::pair< size_t, size_t > > p_ind;

	// Vector and iterator used for computing p_ind.
	std::vector< std::pair< size_t, size_t > > temp_ind;
	std::vector< std::pair< size_t, size_t > >::iterator iter;

	// Loop over sub-groups of powers of two
	for (size_t p (0), start_index (0); 
	     p < _n_vec.size (); 
	     p++, start_index += n_p)
	{
		// update size
		n_p = _n_vec[p];
		l_p = _l_vec[p];

		// loop over levels of sub-group network
		for ( ; level < l_p; level++, difference <<= 1) {
			// Create 
			temp_ind = p_ind;

			// the second sub group is a shift of the first
			for (iter = temp_ind.begin (); iter != temp_ind.end (); iter++) {
				iter->first += difference;
				iter->second += difference;
			}

			// add the second group to the first
			p_ind.insert (p_ind.end (), temp_ind.begin (), temp_ind.end ());

			// add switches to mix the two sub groups
			temp_ind = std::vector< std::pair<size_t, size_t> >
				(difference, std::pair<size_t, size_t> (0, 0));

			size_t i = 0;
			for (iter = temp_ind.begin (); iter != temp_ind.end (); i++, iter++) {
				iter->first += i;
				iter->second += i + difference;
			}

			// add the combining group to the first and second
			p_ind.insert (p_ind.end (), temp_ind.begin (), temp_ind.end ());
		}

		// Add this level to total list of indices and correct starting point
		temp_ind = p_ind;

		for (iter = temp_ind.begin (); iter != temp_ind.end (); iter++) {
			iter->first += start_index;
			iter->second += start_index;
		}

		_indices.insert (_indices.end (), temp_ind.begin (), temp_ind.end ());

		// Combine everything so far
		temp_ind = std::vector< std::pair<size_t, size_t> > (start_index, std::pair<size_t, size_t> (0, 0));

		iter = temp_ind.begin ();
		for (size_t index = 0; index < start_index; index++, iter++) {
			iter->first = index;
			iter->second += index + n_p;
		}

		_indices.insert (_indices.end (), temp_ind.begin (), temp_ind.end ());
	}
}

/** A function used with Butterfly Blackbox Matrices.
 * This function takes an STL vector x of booleans, and returns
 * a vector y of booleans such that setting the switches marked
 * by true flags in y to be on (or to swap elements) the true
 * elements x will be switched to a given contiguous block
 * through the use of a Butterfly switching network.
 * The integer parameter j marks where this block is to begin.
 * If x has r true elements, the Butterfly switching network will place
 * these elements in a contiguous block starting at j and ending at
 * j + r - 1.
 * Wrap around shall be considered to preserve contiguity.
 * The value of j is defaulted to be zero, and it is only allowed to
 * be non-zero is the size of x is a power of 2.
 * @return vector of booleans for setting switches
 * @param x vector of booleans marking elements to switch into
 *	      contiguous block
 * @param j offset of contiguous block
 * @param log reference to ostream for logging
 */
std::vector<bool> setButterfly (const std::vector<bool>& x, 
				size_t j = 0)
{
	size_t n = x.size ();
 
	commentator.start ("Setting butterfly switches", "setButterfly");

	std::ostream &report = commentator.report (Commentator::LEVEL_NORMAL, INTERNAL_DESCRIPTION);

	report << "Called set switches with vector of size " << n
	       << " and offset " << j << std::endl;

	// return empty vector if zero or one elements in x because
	// no switching will be done.
	if (x.size () <= 1) {
		commentator.indent (report);
		report << "No switches needed. Returning with empty vector." << std::endl;

		commentator.stop ("done");
		return std::vector<bool> ();
	}

	commentator.indent (report);
	report << "Counting the number of switches that exist." << std::endl;
 
	// break inputs into groups of size powers of 2.
	// calculate size of groups, and powers of 2 that give sizes
	// store these values in vectors n and l, respectively
	std::vector<size_t> l_vec, n_vec;

	for (size_t value (n), l_p (0), n_p (1);
	     n_p != 0;
	     value >>= 1, l_p++, n_p <<= 1)
	{
		commentator.indent (report);
		report << "  looping at value = " << value
		       << ", l_p = " << l_p
		       << ", n_p = " << n_p << std::endl;
 
		if (value & 1) {
			l_vec.push_back (l_p);
			n_vec.push_back (n_p);

			commentator.indent (report);
			report << "    inserted value = " << value
			       << ", l_p = " << l_p
			       << ", n_p = " << n_p << std::endl;
		}
	}
 
	// Calculate total number of switches required
	size_t s (0);
 
	for (size_t ii = 0; ii < n_vec.size (); ii++)
		s += n_vec[ii] * l_vec[ii] / 2;

	for (size_t ii = 0; ii < n_vec.size () - 1; ii++)
		for (size_t jj = 0; jj <= ii; jj++)
			s += n_vec[jj];
 
	commentator.indent (report);
	report << "There are a total of " << s << " switches" << std::endl;
 
	// Set largest power of 2 in decomposition of n = x.size ()
	size_t n_p (*n_vec.rbegin ());

	commentator.indent (report);
	report << "Found largest power of 2 in decomposition of " << n
	       << " as n_p = " << n_p << std::endl;

	if ( (n != n_p) && (j != 0) ) {
		commentator.indent (report);
		report << "Non-zero offset " << j
		       << " used with non-power size."
		       << "Offset reset to zero." << std::endl;

		j = 0;
	} else
		j %= n;

	if (n == n_p) {
		n_p /= 2;	  // >> is not portable!

		commentator.indent (report);
		report << "n = " << n << " is a power of two.  "
		       << "Resetting n_p to be half of n: n_p = " << n_p << std::endl;
	}

	// count true elements not in largest power of 2 block
	size_t r_1(0);
 
	for (std::vector<bool>::const_iterator iter = x.begin ();
	     iter != x.begin () + (n - n_p);
	     iter++)
		if (*iter) r_1++;

	// count total number of true elements in x.
	size_t r (r_1);
 
	for (std::vector<bool>::const_iterator iter = x.begin () + (n - n_p);
	     iter != x.end ();
	     iter++)
		if (*iter) r++;

	commentator.indent (report);
	report << "The vector x will be broken into two sub-vectors,"
	       << "x_1 = x[0,...," << n - n_p - 1 << "] and x_2 = x["
	       << n - n_p << ",...," << n - 1 << "]."
	       << "There are a total of " << r << " true Elements in x, "
	       << r_1 << " of which occured in the first sub-vector."
	       << "The output vector will have " << s << " entries and will"
	       << "switch the true Elements of x into a contiguous block"
	       << "[" << j << "," << j + r
	       << ") = [" << j << "," << j + r - 1<< "]." << std::endl;

	if (r == 0) {
		commentator.indent (report);
		report << "There are no true Elements in x, so the recursion is"
		       << "being broken and a vector of false flags returned." << std::endl;

		commentator.stop ("done");
		return std::vector<bool> (s, false);
	}
	else if (r == n) {
		commentator.indent (report);
		report << "There are no false Elements in x, so the recursion is"
		       << "being broken and a vector of false flags returned." << std::endl;

		commentator.stop ("done");
		return std::vector<bool> (s, false);
	}

	// Calculate where the true elements are supposed to end up
	// Here, they will be in a contiguous block starting after the
	// offset.  s_1 are the true elements after the offset and in the first
	// sub-group, s_2 are the ones in the second sub group, and s_3 are the
	// elements that wrap around to the beginning.  s_1 and s_3 cannot both
	// be non-zero unless s_2 == n_p.  (I.e., the second group is full.)
	// Also, because for n != 2 n_p the offset is zero, in that case
	// s_3 must be zero.  Any of them may be zero if the corrsponding block
	// is empty.
	// s_2 is only used for tracing the program, so it is not always computed.

	size_t s_1;

	if (j < n - n_p) {
		if (j + r < n - n_p)
			s_1 = r;
		else
			s_1 = n - n_p - j;
	} else
		s_1 = 0;

	size_t s_2 = 0;

	if (commentator.isPrinted (Commentator::LEVEL_NORMAL, INTERNAL_DESCRIPTION)) {
		if (j + r < n - n_p)
			s_2 = 0;
		else {
			if (j + r < n)
				s_2 = j + r;
			else
				s_2 = n;

			if (j < n - n_p)
				s_2 -= (n - n_p);
			else
				s_2 -= j;
		}
	}

	size_t s_3 = ((j + r) > n) ? j + r - n : 0;

	commentator.indent (report);
	report << "The number of Elements in each of the three blocks of "
	       << "true Elements in the end result are"
	       << "s_1 = " << s_1
	       << ", s_2 = " << s_2
	       << ", and s_3 = " << s_3 << "." << std::endl;

	// Create empty vector for output. y_temp is used to retrieve output
	// from recursion before inserting into output.
	std::vector<bool> y_1, y_2, y_3 = std::vector<bool> (n - n_p, false);

	if ((s_1 + s_3) == r_1) {
		commentator.indent (report);
		report << "Case I: s_1 + s_3 == r_1 and s_2 == r - r_1."
		       << "No Elements are moved between the two sub-vectors." << std::endl;

		if (j < (n - n_p)) {
			commentator.indent (report);
			report << "  A: j < (n - n_p).  j_1 = j = " << j << ", j_2 = 0";

			y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j);
			y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), 0);
 
		} else {
			commentator.indent (report);
			report << "  A: j >= (n - n_p).  j_1 = 0, j_2 = j - (n - n_p) = "
			       << j - (n - n_p) << std::endl;

			// This case cannot occur for n != 2*n_p because j != 0

			y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), 0);
			y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), j - (n - n_p));
		}
	}
	else if ((s_1 + s_3) > r_1) {
		commentator.indent (report);
		report << "Case II: s_1 + s_3 > r_1 and s_2 < r - r_1."
		       << "Elements are moved from the right sub-vector to the left." << std::endl;

		// This means that s_2 < n_p, so either s_1 = 0 or s_3 = 0 (or both).
 
		if (j < (n - n_p)) {
			commentator.indent (report);
			report << "  A: j < (n - n_p).  j_1 = j, j_2 = 2*n_p + j + r_1 - n = "
			       << 2*n_p + j + r_1 - n << std::endl;

			// In this case, s_1 > 0, so s_3 = 0, and wrap-around cannot occur.

			y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j);
			y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), 2*n_p + j + r_1 - n);

			for (std::vector<bool>::iterator iter = (y_3.begin () + (j + r_1));
			     iter != (y_3.begin () + (n - n_p));
			     iter++)
				*iter = true;
		} else {
			commentator.indent (report);
			report << "  A: j >= (n - n_p).  j_1 = j + r - n - r_1 = "
			       << j + r - n - r_1 << ", j_2 = j - (n - n_p) = "
			       << j - (n - n_p) << std::endl;

			// In this case, s_1 = 0, so s_3 >= 0, and wrap-around may occur.
			// This case cannot occur for n != 2*n_p because j != 0.

			y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j + r - n - r_1);
			y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), j - (n - n_p));
 
			for (std::vector<bool>::iterator iter = y_3.begin ();
			     iter != (y_3.begin () + (j + r - n - r_1));
			     iter++)
				*iter = true;
		}
	}
	else if ((s_1 + s_3) < r_1) {
		commentator.indent (report);
		report << "Case III: s_1 + s_3 < r_1 and s_2 > r - r_1."
		       << "Elements are moved from the left sub-vector to the right." << std::endl;

		// This case also means that s_1 + s_3 < n - n_p, or the contiguous 
		// block cannot encompass the entire first sub-vector.  For this 
		// reason, this case is not considered when n != 2*n_p (when j = 0).

		if (j < (n - n_p)) {
			commentator.indent (report);
			report << "  A: j < (n - n_p).  j_1 = j = " << j
			       << ", j_2 = j + r_1 - n + n_p = " << j + r_1 - n + n_p << std::endl;
			// In this case, s_1 > 0, so s_3 = 0, and wrap-around cannot occur.

			y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j);
			y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), j + r_1 - n + n_p);

			for (std::vector<bool>::iterator iter = (y_3.begin () + s_3);
			     iter != (y_3.begin () + (j + r_1 - n + n_p));
			     iter++)
				*iter = true;
		} else {
			commentator.indent (report);
			report << "  A: j >= (n - n_p).  j_1 = j + r - n_p - r_1 = "
			       << j + r - n_p - r_1 << ", j_2 = j - (n - n_p) = "
			       << j - (n - n_p) << std::endl;

			// In this case, s_1 = 0, so s_3 >= 0, and wrap-around may occur.
			// This case cannot occur for n != 2*n_p because j != 0.

			y_1 = setButterfly (std::vector<bool>(x.begin (), x.begin () + (n - n_p)), j + r - n_p - r_1);
			y_2 = setButterfly (std::vector<bool>(x.begin () + (n - n_p), x.end ()), j - (n - n_p));
 
			for (std::vector<bool>::iterator iter (y_3.begin () + (j + r - n_p - r_1));
			     iter != (y_3.begin () + (n - n_p));
			     iter++)
				*iter = true;
		}
	}

	// Create output vector.
	std::vector<bool> y (y_1);
	y.insert (y.end (), y_2.begin (), y_2.end ());
	y.insert (y.end (), y_3.begin (), y_3.end ());

	commentator.indent (report);
	report << "The output vector for n = " << n << " has " << y.size ()
	       << " entries."
	       << "  " << y_1.size () << " from the first sub-vector"
	       << "  " << y_2.size () << " from the second sub-vector"
	       << "  " << y_3.size () << " from recombining the two"
	       << "And the output vector y is:"
	       << "-------------------------- " << std::endl;

	for (size_t i = 0; i < y.size (); i++) {
		commentator.indent (report);
		report << "  " << i << ": " << y[i] << std::endl;
	}

	commentator.indent (report);
	report << "-------------------------- " << std::endl;

	commentator.stop ("done");
 
	return y;

} // std::vector<bool> setButterfly (const std::vector<bool>& x, size_t j)

//@}
} // namespace LinBox

#endif // __BUTTERFLY_H