This file is indexed.

/usr/include/linbox/blackbox/polynomial.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */

/* linbox/blackbox/polynomial.h
 * Copyright (C) 2005 Cl'ement Pernet
 *
 * Written by Cl'ement Pernet <Clement.Pernet@imag.fr>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

#ifndef __POLYNOMIAL_H
#define __POLYNOMIAL_H

#include <linbox/blackbox/blackbox-interface.h>
#include <linbox/vector/vector-domain.h>
// Namespace in which all LinBox library code resides
namespace LinBox
{

	/** \brief represent the matrix P(A) where A is a blackbox and P a polynomial
	    
	\ingroup blackbox
	
	*/
	template <class Blackbox, class Poly>
	class PolynomialBB : public BlackboxInterface
	{
	public:
		
		typedef typename Blackbox::Field Field;
		typedef typename Blackbox::Element Element;
		typedef Poly Polynomial;
		typedef PolynomialBB<Blackbox,Polynomial> Self_t;

		/** Constructor from a black box and a polynomial.
		 */
		PolynomialBB (const Blackbox& A, const Polynomial& P) : _A_ptr(&A), _P_ptr(&P), _VD(A.field()) {}
		
		PolynomialBB (const Blackbox *A_ptr, const Polynomial * P_ptr): _A_ptr(A_ptr), _P_ptr(P_ptr), _VD(A_ptr->field())
		{
		}
		
		/** Copy constructor.
		 * Creates new black box objects in dynamic memory.
		 * @param M constant reference to compose black box matrix
		 */
		PolynomialBB (const PolynomialBB<Blackbox, Polynomial> &M) : _A_ptr(M._A_ptr), _P_ptr(M._P_ptr), _VD(M._VD)
		{
		}

		/// Destructor
		~PolynomialBB (void)
		{
		}


		/** Application of BlackBox matrix.
		 * y = P(A)x
		 * Requires one vector conforming to the \ref{LinBox}
		 * vector {@link Archetypes archetype}.
		 * Required by abstract base class.
		 * @return reference to vector y containing output.
		 * @param  x constant reference to vector to contain input
		 */
		template <class Vector1, class Vector2>
		inline Vector1 &apply (Vector1 &y, const Vector2 &x) const
		{
			Vector2 u (x);
			Vector2 v(u.size());
			_VD.mul( y, x, _P_ptr->operator[](0) );
			for (size_t i=1; i<_P_ptr->size(); ++i){
				_A_ptr->apply( v, u );
				_VD.axpyin( y, _P_ptr->operator[](i), v);
				u=v;
			}
			return y;
		}


		/** Application of BlackBox matrix transpose.
		 * y= transpose(A*B)*x.
		 * Requires one vector conforming to the \ref{LinBox}
		 * vector {@link Archetypes archetype}.
		 * Required by abstract base class.
		 * @return reference to vector y containing output.
		 * @param  x constant reference to vector to contain input
		 */
		template <class Vector1, class Vector2>
		inline Vector1 &applyTranspose (Vector1 &y, const Vector2 &x) const
		{
			Vector2 u( x );
			Vector2 v(u.size());
			_VD.mul( y, x, _P_ptr->operator[](0));
			for (size_t i=1; i<_P_ptr->size(); ++i){
				_A_ptr->applyTranspose( v, u );
				_VD.axpyin( y, _P_ptr->operator[](i), v);
				u=v;
			}
			return y;
		}

		
		template<typename _Tp1, class Poly1 = typename Polynomial::template rebind<_Tp1>::other> 
		struct rebind 
		{ 
			typedef PolynomialBB<typename Blackbox::template rebind<_Tp1>::other, Poly1> other;
			
			void operator() (other *& Ap, const Self_t& A, const _Tp1& F) {
				typedef typename Blackbox::template rebind<_Tp1>::other FBB;
				Poly1  * Pp;
				FBB * BBp;
				typename Polynomial::template rebind<_Tp1>() (Pp, A.getPolynomial(), F);
				typename Blackbox::template rebind<_Tp1>() (BBp, A.getBlackbox(),F);

				Ap = new other (*BBp, *Pp);
			}
		};



		/** Retreive row dimensions of BlackBox matrix.
		 * This may be needed for applying preconditioners.
		 * Required by abstract base class.
		 * @return integer number of rows of black box matrix.
		 */
		size_t rowdim (void) const
		{
			if (_A_ptr != 0) 
				return _A_ptr->rowdim ();
			else 
				return 0;
		}
    
		/** Retreive column dimensions of BlackBox matrix.
		 * Required by abstract base class.
		 * @return integer number of columns of black box matrix.
		 */
		size_t coldim (void) const 
		{
			if (_A_ptr != 0) 
				return _A_ptr->coldim ();
			else 
				return 0;
		}
	       

		const Polynomial& getPolynomial () const  { return *_P_ptr; }
		const Blackbox& getBlackbox () const { return *_A_ptr; }
		const Field& field () const {return _A_ptr->field();}
	    private:

		// Pointers to A and P
		const Blackbox *_A_ptr;
		const Polynomial *_P_ptr;
		const VectorDomain<Field> _VD;

	};

} // namespace LinBox

#endif // __POLYNOMIAL_H