/usr/include/linbox/blackbox/polynomial.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/blackbox/polynomial.h
* Copyright (C) 2005 Cl'ement Pernet
*
* Written by Cl'ement Pernet <Clement.Pernet@imag.fr>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef __POLYNOMIAL_H
#define __POLYNOMIAL_H
#include <linbox/blackbox/blackbox-interface.h>
#include <linbox/vector/vector-domain.h>
// Namespace in which all LinBox library code resides
namespace LinBox
{
/** \brief represent the matrix P(A) where A is a blackbox and P a polynomial
\ingroup blackbox
*/
template <class Blackbox, class Poly>
class PolynomialBB : public BlackboxInterface
{
public:
typedef typename Blackbox::Field Field;
typedef typename Blackbox::Element Element;
typedef Poly Polynomial;
typedef PolynomialBB<Blackbox,Polynomial> Self_t;
/** Constructor from a black box and a polynomial.
*/
PolynomialBB (const Blackbox& A, const Polynomial& P) : _A_ptr(&A), _P_ptr(&P), _VD(A.field()) {}
PolynomialBB (const Blackbox *A_ptr, const Polynomial * P_ptr): _A_ptr(A_ptr), _P_ptr(P_ptr), _VD(A_ptr->field())
{
}
/** Copy constructor.
* Creates new black box objects in dynamic memory.
* @param M constant reference to compose black box matrix
*/
PolynomialBB (const PolynomialBB<Blackbox, Polynomial> &M) : _A_ptr(M._A_ptr), _P_ptr(M._P_ptr), _VD(M._VD)
{
}
/// Destructor
~PolynomialBB (void)
{
}
/** Application of BlackBox matrix.
* y = P(A)x
* Requires one vector conforming to the \ref{LinBox}
* vector {@link Archetypes archetype}.
* Required by abstract base class.
* @return reference to vector y containing output.
* @param x constant reference to vector to contain input
*/
template <class Vector1, class Vector2>
inline Vector1 &apply (Vector1 &y, const Vector2 &x) const
{
Vector2 u (x);
Vector2 v(u.size());
_VD.mul( y, x, _P_ptr->operator[](0) );
for (size_t i=1; i<_P_ptr->size(); ++i){
_A_ptr->apply( v, u );
_VD.axpyin( y, _P_ptr->operator[](i), v);
u=v;
}
return y;
}
/** Application of BlackBox matrix transpose.
* y= transpose(A*B)*x.
* Requires one vector conforming to the \ref{LinBox}
* vector {@link Archetypes archetype}.
* Required by abstract base class.
* @return reference to vector y containing output.
* @param x constant reference to vector to contain input
*/
template <class Vector1, class Vector2>
inline Vector1 &applyTranspose (Vector1 &y, const Vector2 &x) const
{
Vector2 u( x );
Vector2 v(u.size());
_VD.mul( y, x, _P_ptr->operator[](0));
for (size_t i=1; i<_P_ptr->size(); ++i){
_A_ptr->applyTranspose( v, u );
_VD.axpyin( y, _P_ptr->operator[](i), v);
u=v;
}
return y;
}
template<typename _Tp1, class Poly1 = typename Polynomial::template rebind<_Tp1>::other>
struct rebind
{
typedef PolynomialBB<typename Blackbox::template rebind<_Tp1>::other, Poly1> other;
void operator() (other *& Ap, const Self_t& A, const _Tp1& F) {
typedef typename Blackbox::template rebind<_Tp1>::other FBB;
Poly1 * Pp;
FBB * BBp;
typename Polynomial::template rebind<_Tp1>() (Pp, A.getPolynomial(), F);
typename Blackbox::template rebind<_Tp1>() (BBp, A.getBlackbox(),F);
Ap = new other (*BBp, *Pp);
}
};
/** Retreive row dimensions of BlackBox matrix.
* This may be needed for applying preconditioners.
* Required by abstract base class.
* @return integer number of rows of black box matrix.
*/
size_t rowdim (void) const
{
if (_A_ptr != 0)
return _A_ptr->rowdim ();
else
return 0;
}
/** Retreive column dimensions of BlackBox matrix.
* Required by abstract base class.
* @return integer number of columns of black box matrix.
*/
size_t coldim (void) const
{
if (_A_ptr != 0)
return _A_ptr->coldim ();
else
return 0;
}
const Polynomial& getPolynomial () const { return *_P_ptr; }
const Blackbox& getBlackbox () const { return *_A_ptr; }
const Field& field () const {return _A_ptr->field();}
private:
// Pointers to A and P
const Blackbox *_A_ptr;
const Polynomial *_P_ptr;
const VectorDomain<Field> _VD;
};
} // namespace LinBox
#endif // __POLYNOMIAL_H
|