/usr/include/linbox/fflas/fflas.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* fflas.h
* Copyright (C) 2005 Clement Pernet
*
* Written by Clement Pernet <Clement.Pernet@imag.fr>
*
* See COPYING for license information.
*/
#include <math.h>
#ifndef __FFLAS_H
#define __FFLAS_H
#include <math.h>
#ifndef MAX
#define MAX(a,b) ((a < b)?b:a)
#endif
#ifndef MIN
#define MIN(a,b) ((a > b)?b:a)
#endif
#ifdef _LINBOX_LINBOX_CONFIG_H
#include "linbox/config-blas.h"
#include "linbox/field/unparametric.h"
#include "linbox/field/modular-double.h"
#include "linbox/field/modular-float.h"
#include "linbox/field/modular-balanced-double.h"
#include "linbox/field/modular-balanced-float.h"
namespace LinBox {
#else
#include "config-blas.h"
#include "fflas-ffpack/unparametric.h"
#include "fflas-ffpack/modular-positive.h"
#include "fflas-ffpack/modular-balanced.h"
#endif
#ifndef __LINBOX_STRASSEN_OPTIMIZATION
#define WINOTHRESHOLD 1000
#else
#define WINOTHRESHOLD __LINBOX_WINOTHRESHOLD
#endif
// Thresholds determining which floating point representation to use,
// depending on the cardinality of the finite field. This is only used when
// the element representation is not a floating point type.
#define FLOAT_DOUBLE_THRESHOLD_0 430
#define FLOAT_DOUBLE_THRESHOLD_1 350
#define FLOAT_DOUBLE_THRESHOLD_2 175
#define DOUBLE_MANTISSA 53
#define FLOAT_MANTISSA 24
class FFLAS {
public:
enum FFLAS_TRANSPOSE { FflasNoTrans=111, FflasTrans=112};
enum FFLAS_UPLO { FflasUpper=121, FflasLower=122 };
enum FFLAS_DIAG { FflasNonUnit=131, FflasUnit=132 };
enum FFLAS_SIDE { FflasLeft=141, FflasRight = 142 };
/* Determine the type of the element representation for Matrix Mult kernel
* FflasDouble: to use the double precision BLAS
* FflasFloat: to use the single precison BLAS
* FflasGeneric: for any other domain, that can not be converted to floating point integers
*/
enum FFLAS_BASE { FflasDouble = 151, FflasFloat = 152, FflasGeneric = 153};
/* Representations of Z with floating point elements*/
typedef UnparametricField<float> FloatDomain;
typedef UnparametricField<double> DoubleDomain;
//---------------------------------------------------------------------
// Level 1 routines
//---------------------------------------------------------------------
//---------------------------------------------------------------------
// fscal: X <- alpha.X
// X is a vector of size n
//---------------------------------------------------------------------
template<class Field>
static void
fscal (const Field& F, const size_t n, const typename Field::Element alpha,
typename Field::Element * X, const size_t incX){
typename Field::Element * Xi = X;
for (; Xi < X+n*incX; Xi+=incX )
F.mulin( *Xi, alpha );
}
//---------------------------------------------------------------------
// fcopy: x <- y
// x,y are vectors of size N
//---------------------------------------------------------------------
template<class Field>
static void
fcopy (const Field& F, const size_t N,
typename Field::Element * X, const size_t incX,
const typename Field::Element * Y, const size_t incY );
//---------------------------------------------------------------------
// faxpy: y <- a.x + y
// x,y are vectors of size N
//---------------------------------------------------------------------
template<class Field>
static void
faxpy (const Field& F, const size_t N,
const typename Field::Element a,
const typename Field::Element * X, const size_t incX,
typename Field::Element * Y, const size_t incY );
//---------------------------------------------------------------------
// fdot: returns x^T . y
// x and y are vectors of size N
//---------------------------------------------------------------------
template<class Field>
static typename Field::Element
fdot (const Field& F, const size_t N,
const typename Field::Element * X, const size_t incX,
const typename Field::Element * Y, const size_t incY );
//---------------------------------------------------------------------
// fswap: X <-> Y
// X,Y are vectors of size N
//---------------------------------------------------------------------
template<class Field>
static void
fswap (const Field& F, const size_t N, typename Field::Element * X, const size_t incX,
typename Field::Element * Y, const size_t incY ){
typename Field::Element tmp;
typename Field::Element * Xi = X;
typename Field::Element * Yi=Y;
for (; Xi < X+N*incX; Xi+=incX, Yi+=incY ){
F.assign( tmp, *Xi );
F.assign( *Xi, *Yi );
F.assign( *Yi, tmp );
}
}
//---------------------------------------------------------------------
// Level 2 routines
//---------------------------------------------------------------------
/**
* @brief finite prime Field GEneral Matrix Vector multiplication
*
* Computes Y <- alpha op(A).X + beta.Y \\
* A is m*n
*/
template<class Field>
static void
fgemv (const Field& F, const FFLAS_TRANSPOSE TransA,
const size_t M, const size_t N,
const typename Field::Element alpha,
const typename Field::Element * A, const size_t lda,
const typename Field::Element * X, const size_t incX,
const typename Field::Element beta,
typename Field::Element * Y, const size_t incY);
/**
* @brief fger: GEneral ?
*
* Computes A <- alpha x . y^T + A \\
* A is m*n, x and y are vectors of size m and n
*/
template<class Field>
static void
fger (const Field& F, const size_t M, const size_t N,
const typename Field::Element alpha,
const typename Field::Element * x, const size_t incx,
const typename Field::Element * y, const size_t incy,
typename Field::Element * A, const size_t lda);
/**
@brief ftrsv: TRiangular System solve with Vector
Computes X <- op(A^-1).X\\
size of X is N
*/
template<class Field>
static void
ftrsv (const Field& F, const FFLAS_UPLO Uplo,
const FFLAS_TRANSPOSE TransA, const FFLAS_DIAG Diag,
const size_t N,const typename Field::Element * A, const size_t lda,
typename Field::Element * X, int incX);
//---------------------------------------------------------------------
// Level 3 routines
//---------------------------------------------------------------------
//---------------------------------------------------------------------
// ftrsm: TRiangular System solve with matrix
// Computes B <- alpha.op(A^-1).B, B <- alpha.B.op(A^-1)
// B is m*n
//---------------------------------------------------------------------
template<class Field>
static void
ftrsm (const Field& F, const FFLAS_SIDE Side,
const FFLAS_UPLO Uplo,
const FFLAS_TRANSPOSE TransA,
const FFLAS_DIAG Diag,
const size_t M, const size_t N,
const typename Field::Element alpha,
typename Field::Element * A, const size_t lda,
typename Field::Element * B, const size_t ldb);
//---------------------------------------------------------------------
// ftrmm: TRiangular Matrix Multiply
// Computes B <- alpha.op(A).B, B <- alpha.B.op(A)
// B is m*n
//---------------------------------------------------------------------
template<class Field>
static void
ftrmm (const Field& F, const FFLAS_SIDE Side,
const FFLAS_UPLO Uplo,
const FFLAS_TRANSPOSE TransA,
const FFLAS_DIAG Diag,
const size_t M, const size_t N,
const typename Field::Element alpha,
typename Field::Element * A, const size_t lda,
typename Field::Element * B, const size_t ldb);
/** @brief Field GEneral Matrix Multiply
*
* Computes C = alpha.op(A)*op(B) + beta.C ,
* op(A) = A, A<sup>T</sup>
* wl recursive levels of Winograd's algorithm are used
*/
template<class Field>
static typename Field::Element*
fgemm( const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m,
const size_t n,
const size_t k,
const typename Field::Element alpha,
const typename Field::Element* A, const size_t lda,
const typename Field::Element* B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element* C, const size_t ldc,
const size_t w){
if (!(m && n && k)) return C;
if (F.isZero (alpha)){
for (size_t i = 0; i<m; ++i)
fscal(F, n, beta, C + i*ldc, 1);
return C;
}
size_t kmax = 0;
size_t winolevel = w;
FFLAS_BASE base;
MatMulParameters (F, MIN(MIN(m,n),k), beta, kmax, base,
winolevel, true);
WinoMain (F, ta, tb, m, n, k, alpha, A, lda, B, ldb, beta,
C, ldc, kmax, winolevel, base);
return C;
};
/** @brief Field GEneral Matrix Multiply
*
* Computes C = alpha.op(A)*op(B) + beta.C ,
* op(A) = A, A<sup>T</sup>
* Automitically set Winograd recursion level
*/
template<class Field>
static typename Field::Element*
fgemm (const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m,
const size_t n,
const size_t k,
const typename Field::Element alpha,
const typename Field::Element* A, const size_t lda,
const typename Field::Element* B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element* C, const size_t ldc){
if (!(m && n && k)) return C;
if (F.isZero (alpha)){
for (size_t i = 0; i<m; ++i)
fscal(F, n, beta, C + i*ldc, 1);
return C;
}
size_t w, kmax;
FFLAS_BASE base;
MatMulParameters (F, MIN(MIN(m,n),k), beta, kmax, base, w);
WinoMain (F, ta, tb, m, n, k, alpha, A, lda, B, ldb, beta,
C, ldc, kmax, w, base);
return C;
}
//---------------------------------------------------------------------
// fsquare:
// compute C = alpha. op(A)*op(A) + beta.C over a Field
// op(A) =A, A^T
// Avoid the conversion of B
//---------------------------------------------------------------------
template<class Field>
static typename Field::Element* fsquare (const Field& F,
const FFLAS_TRANSPOSE ta,
const size_t n,
const typename Field::Element alpha,
const typename Field::Element* A,
const size_t lda,
const typename Field::Element beta,
typename Field::Element* C,
const size_t ldc);
/**
* MatCopy
* Makes a copy of the matrix M into a new allocated space.
*/
template<class Field>
static typename Field::Element* MatCopy (const Field& F,
const size_t M, const size_t N,
const typename Field::Element * A,
const size_t lda){
typename Field::Element * C = new typename Field::Element[M*N];
for (size_t i = 0; i < N; ++i)
for (size_t j = 0; j < N; ++j)
F.assign(*(C + i*N + j),*(A + i*lda + j));
return C;
}
protected:
// Prevents the instantiation of the class
FFLAS(){}
template <class X,class Y>
class AreEqual
{
public:
static const bool value = false;
};
template <class X>
class AreEqual<X,X>
{
public:
static const bool value = true;
};
//-----------------------------------------------------------------------------
// Some conversion functions
//-----------------------------------------------------------------------------
//---------------------------------------------------------------------
// Finite Field matrix => double matrix
//---------------------------------------------------------------------
template<class Field>
static void MatF2MatD (const Field& F,
DoubleDomain::Element* S, const size_t lds,
const typename Field::Element* E,
const size_t lde,const size_t m, const size_t n){
const typename Field::Element* Ei = E;
DoubleDomain::Element *Si=S;
size_t j;
for (; Ei < E+lde*m; Ei+=lde, Si += lds)
for ( j=0; j<n; ++j){
F.convert(*(Si+j),*(Ei+j));
}
}
//---------------------------------------------------------------------
// Finite Field matrix => float matrix
//---------------------------------------------------------------------
template<class Field>
static void MatF2MatFl (const Field& F,
FloatDomain::Element* S, const size_t lds,
const typename Field::Element* E,
const size_t lde,const size_t m, const size_t n){
const typename Field::Element* Ei = E;
FloatDomain::Element *Si=S;
size_t j;
for (; Ei < E+lde*m; Ei+=lde, Si += lds)
for ( j=0; j<n; ++j){
F.convert(*(Si+j),*(Ei+j));
}
}
//---------------------------------------------------------------------
// Finite Field matrix => double matrix
// Special design for upper-triangular matrices
//---------------------------------------------------------------------
template<class Field>
static void MatF2MatD_Triangular (const Field& F,
typename DoubleDomain::Element* S, const size_t lds,
const typename Field::Element* const E,
const size_t lde,
const size_t m, const size_t n){
const typename Field::Element* Ei = E;
typename DoubleDomain::Element* Si = S;
size_t i=0, j;
for ( ; i<m;++i, Ei+=lde, Si+=lds)
for ( j=i; j<n;++j)
F.convert(*(Si+j),*(Ei+j));
}
//---------------------------------------------------------------------
// Finite Field matrix => float matrix
// Special design for upper-triangular matrices
//---------------------------------------------------------------------
template<class Field>
static void MatF2MatFl_Triangular (const Field& F,
typename FloatDomain::Element* S, const size_t lds,
const typename Field::Element* const E,
const size_t lde,
const size_t m, const size_t n){
const typename Field::Element* Ei = E;
typename FloatDomain::Element* Si = S;
size_t i=0, j;
for ( ; i<m;++i, Ei+=lde, Si+=lds)
for ( j=i; j<n;++j)
F.convert(*(Si+j),*(Ei+j));
}
//---------------------------------------------------------------------
// double matrix => Finite Field matrix
//---------------------------------------------------------------------
template<class Field>
static void MatD2MatF (const Field& F,
typename Field::Element* S, const size_t lds,
const typename DoubleDomain::Element* E, const size_t lde,
const size_t m, const size_t n){
typename Field::Element* Si = S;
const DoubleDomain::Element* Ei =E;
size_t j;
for ( ; Si < S+m*lds; Si += lds, Ei+= lde){
for ( j=0; j<n;++j)
F.init( *(Si+j), *(Ei+j) );
}
}
//---------------------------------------------------------------------
// float matrix => Finite Field matrix
//---------------------------------------------------------------------
template<class Field>
static void MatFl2MatF (const Field& F,
typename Field::Element* S, const size_t lds,
const typename FloatDomain::Element* E, const size_t lde,
const size_t m, const size_t n){
typename Field::Element* Si = S;
const FloatDomain::Element* Ei =E;
size_t j;
for ( ; Si < S+m*lds; Si += lds, Ei+= lde){
for ( j=0; j<n;++j)
F.init( *(Si+j), *(Ei+j) );
}
}
/**
* MatMulParameters
*
* \brief Computes the threshold parameters for the cascade
* Matmul algorithm
*
*
* \param F Finite Field/Ring of the computation.
* \param k Common dimension of A and B, in the product A x B
* \param bet Computing AB + beta C
* \param delayedDim Returns the size of blocks that can be multiplied
* over Z with no overflow
* \param base Returns the type of BLAS representation to use
* \param winoRecLevel Returns the number of recursion levels of
* Strassen-Winograd's algorithm to perform
* \param winoLevelProvided tells whether the user forced the number of
* recursive level of Winograd's algorithm
*
* See [Dumas, Giorgi, Pernet, arXiv cs/0601133]
* http://arxiv.org/abs/cs.SC/0601133
*/
template <class Field>
static void MatMulParameters (const Field& F,
const size_t k,
const typename Field::Element& beta,
size_t& delayedDim,
FFLAS_BASE& base,
size_t& winoRecLevel,
bool winoLevelProvided=false);
/**
* DotprodBound
*
* \brief computes the maximal size for delaying the modular reduction
* in a dotproduct
*
* This is the default version assuming a conversion to a positive modular representation
*
* \param F Finite Field/Ring of the computation
* \param winoRecLevel Number of recusrive Strassen-Winograd levels (if any, 0 otherwise)
* \param beta Computing AB + beta C
* \param base Type of floating point representation for delayed modular computations
*
*/
template <class Field>
static size_t DotProdBound (const Field& F,
const size_t w,
const typename Field::Element& beta,
const FFLAS_BASE base);
/**
* Internal function for the bound computation
* Generic implementation for positive representations
*/
template <class Field>
static double computeFactor (const Field& F, const size_t w);
/**
* Winosteps
*
* \brief Computes the number of recursive levels to perform
*
* \param m the common dimension in the product AxB
*/
static size_t WinoSteps (const size_t m);
/**
* BaseCompute
*
* \brief Determines the type of floating point representation to convert to,
* for BLAS computations
* \param F Finite Field/Ring of the computation
* \param w Number of recursive levels in Winograd's algorithm
*/
template <class Field>
static FFLAS_BASE BaseCompute (const Field& F, const size_t w);
/**
* TRSMBound
*
* \brief computes the maximal size for delaying the modular reduction
* in a triangular system resolution
*
* Compute the maximal dimension k, such that a unit diagonal triangular
* system of dimension k can be solved over Z without overflow of the
* underlying floating point representation.
* See [Dumas, Giorgi, Pernet 06, arXiv:cs/0601133 ]
*
* \param F Finite Field/Ring of the computation
*
*/
template <class Field>
static size_t TRSMBound (const Field& F);
template <class Field>
static void DynamicPealing( const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m, const size_t n, const size_t k,
const typename Field::Element alpha,
const typename Field::Element* A, const size_t lda,
const typename Field::Element* B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element* C, const size_t ldc,
const size_t kmax );
template<class Field>
static void MatVectProd (const Field& F,
const FFLAS_TRANSPOSE TransA,
const size_t M, const size_t N,
const typename Field::Element alpha,
const typename Field::Element * A, const size_t lda,
const typename Field::Element * X, const size_t incX,
const typename Field::Element beta,
typename Field::Element * Y, const size_t incY);
template <class Field>
static void ClassicMatmul(const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m, const size_t n, const size_t k,
const typename Field::Element alpha,
const typename Field::Element * A, const size_t lda,
const typename Field::Element * B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element * C, const size_t ldc,
const size_t kmax, const FFLAS_BASE base );
// Winograd Multiplication alpha.A(n*k) * B(k*m) + beta . C(n*m)
// WinoCalc performs the 22 Winograd operations
template<class Field>
static void WinoCalc (const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t mr, const size_t nr,const size_t kr,
const typename Field::Element alpha,
const typename Field::Element* A,const size_t lda,
const typename Field::Element* B,const size_t ldb,
const typename Field::Element beta,
typename Field::Element * C, const size_t ldc,
const size_t kmax, const size_t w, const FFLAS_BASE base);
template<class Field>
static void WinoMain (const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m, const size_t n, const size_t k,
const typename Field::Element alpha,
const typename Field::Element* A,const size_t lda,
const typename Field::Element* B,const size_t ldb,
const typename Field::Element beta,
typename Field::Element * C, const size_t ldc,
const size_t kmax, const size_t w, const FFLAS_BASE base);
// Specialized routines for ftrsm
template <class Element>
class ftrsmLeftUpperNoTransNonUnit;
template <class Element>
class ftrsmLeftUpperNoTransUnit;
template <class Element>
class ftrsmLeftUpperTransNonUnit;
template <class Element>
class ftrsmLeftUpperTransUnit;
template <class Element>
class ftrsmLeftLowerNoTransNonUnit;
template <class Element>
class ftrsmLeftLowerNoTransUnit;
template <class Element>
class ftrsmLeftLowerTransNonUnit;
template <class Element>
class ftrsmLeftLowerTransUnit;
template <class Element>
class ftrsmRightUpperNoTransNonUnit;
template <class Element>
class ftrsmRightUpperNoTransUnit;
template <class Element>
class ftrsmRightUpperTransNonUnit;
template <class Element>
class ftrsmRightUpperTransUnit;
template <class Element>
class ftrsmRightLowerNoTransNonUnit;
template <class Element>
class ftrsmRightLowerNoTransUnit;
template <class Element>
class ftrsmRightLowerTransNonUnit;
template <class Element>
class ftrsmRightLowerTransUnit;
// Specialized routines for ftrmm
template <class Element>
class ftrmmLeftUpperNoTransNonUnit;
template <class Element>
class ftrmmLeftUpperNoTransUnit;
template <class Element>
class ftrmmLeftUpperTransNonUnit;
template <class Element>
class ftrmmLeftUpperTransUnit;
template <class Element>
class ftrmmLeftLowerNoTransNonUnit;
template <class Element>
class ftrmmLeftLowerNoTransUnit;
template <class Element>
class ftrmmLeftLowerTransNonUnit;
template <class Element>
class ftrmmLeftLowerTransUnit;
template <class Element>
class ftrmmRightUpperNoTransNonUnit;
template <class Element>
class ftrmmRightUpperNoTransUnit;
template <class Element>
class ftrmmRightUpperTransNonUnit;
template <class Element>
class ftrmmRightUpperTransUnit;
template <class Element>
class ftrmmRightLowerNoTransNonUnit;
template <class Element>
class ftrmmRightLowerNoTransUnit;
template <class Element>
class ftrmmRightLowerTransNonUnit;
template <class Element>
class ftrmmRightLowerTransUnit;
}; // class FFLAS
#include "fflas_bounds.inl"
#include "fflas_fgemm.inl"
#include "fflas_fgemv.inl"
#include "fflas_fger.inl"
#include "fflas_ftrsm.inl"
#include "fflas_ftrmm.inl"
#include "fflas_ftrsv.inl"
#include "fflas_faxpy.inl"
#include "fflas_fdot.inl"
#include "fflas_fcopy.inl"
#ifdef _LINBOX_LINBOX_CONFIG_H
}
#endif
#endif // __FFLAS_H
|