This file is indexed.

/usr/include/linbox/field/PID-double.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/field/PID-double.h
 * Copyright (C) 2004 Pascal Giorgi 
 *
 * Written by :
 *               Pascal Giorgi  pascal.giorgi@ens-lyon.fr
 *               
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */




#ifndef __PID_DOUBLE_H
#define __PID_DOUBLE_H

#include <linbox/field/unparametric.h>
#include <linbox/field/field-traits.h>

namespace LinBox {


	/// \ingroup ring
	class PID_double : public UnparametricField<double> 
	{

	public:

		typedef double Element;

		inline static bool isUnit (const Element& x) {
			
			return (x == double(1))  || (x== double(-1));
		}

		inline static Element& abs (Element& x, const Element& a) {
			x= (a>0)? a: -a;
			return x;
		}

		inline static Element abs (const Element& a){
			return (a>0)? a: -a;
		}
		
		/** compare two elements, a and b
		 * return 1, if a > b
		 * return 0, if a = b;
		 * return -1. if a < b
		 */
		inline long compare (const Element& a, const Element& b) const {
			
			return (a>b)? 1: ((a<b)? -1 : 0);
		}
		

		/** @brief gcd (g, a, b)
		 *  return g = gcd (a, b)
		 */
		inline static Element& gcd (Element& g, const Element& a, const Element& b) {
				
			double  u, v, q, r;
			u = a; v = b;

			if (u < 0) {	  
				u = -u;				
			}
 
			if (v < 0) { 	 
				v = -v;
			} 	
 
			while (v != 0) {
				q = floor(u/v);
				r = u -q*v;
				u = v;
				v = r;
			}
 
			g = u;

			return g;
		}
	
		/** @brief gcding (g, b)
		 *  return g = gcd (g, b)
		 */
		inline static Element& gcdin (Element& g, const Element& b) {
			
			gcd(g, g, b);

			return g;
		}

		/** @brief xgcd (g, s, t, a, b)
		 *  g = gcd(a, b) = a*s + b*t.
		 *  The coefficients s and t are defined according to the standard
		 *  Euclidean algorithm applied to |a| and |b|, with the signs then
		 *  adjusted according to the signs of a and b.
		 */
		inline static Element& xgcd (Element& g, Element& s, Element& t, const Element& a, const Element& b){
			double  u, v, u0, v0, u1, v1, u2, v2, q, r;
 
			int aneg = 0, bneg = 0;
			u = a; v = b;
			if (u < 0) {	  
				u = -u;
				aneg = 1;
			}
 
			if (v < 0) {	 
				v = -v;
				bneg = 1;
			}
 
			u1 = 1; v1 = 0;
			u2 = 0; v2 = 1;

 
			while (v != 0) {
				q = floor(u / v);
				r = u -q*v;
				u = v;
				v = r;
				u0 = u2;
				v0 = v2;
				u2 =  u1 - q*u2;
				v2 = v1- q*v2;
				u1 = u0;
				v1 = v0;
			}
 
			if (aneg)
				u1 = -u1;
 
			if (bneg)
				v1 = -v1;
 
			g = u;
			s = u1;
			t = v1;

			return g;
		}

		/** @brief lcm (c, a, b)
		 *  c = lcm (a, b)
		 */
		inline static Element& lcm (Element& c, const Element& a, const Element& b) {
			
			if ((a==0.) || (b==0.)) return c = 0.;
			
			else {
				Element g;
			
				gcd (g, a, b);
				
				c= a*b;
				c /= g;

				if (c<0) c = -c; //no abs for double, dpritcha
				// c=abs (c);
			
				return c;
			}
		}
		
		/** @brief lcmin (l, b)
		 *  l = lcm (l, b)
		 */
		inline static Element& lcmin (Element& l, const Element& b) {

			if ((l==0.) || (b==0.)) return l = 0.;
			
			else {
				Element g;
			
				gcd (g, l, b);
				
				l*= b;
				l/= g;
	  
				//l=abs (l);
				if (l < 0) l = -l;
				return l;
			}
	
		}


		inline static long reconstructRational (Element& a, Element& b, const Element& x, const Element& m, 
							const Element& a_bound, const Element& b_bound) {
			
			double  u, v, u0, u1, u2, q, r;
	
			u1 = 0; 
			u2 = 1; 
			u = m; v = x;
 
			while ((v != 0) && ( v > a_bound)) {
				q = floor(u / v);
				r = u -q*v;
				u = v;
				v = r;
				u0 = u2;	 
				u2 =  u1 - q*u2;	 
				u1 = u0;	
			}
	
			if (u2 < 0.) { u2= -u2; v=-v;}
			a = v;
			b = u2;
	
			return  (b > b_bound)? 0: 1;	

		}


		/** @brief quo (q, x, y)
		 *  q = floor (x/y);
		 */
		inline static Element& quo (Element& q, const Element& a, const Element& b) {
			return  q = floor (a/b);
		}
      
		/** @brief rem (r, a, b)
		 *  r = remindar of  a / b
		 */
		inline static Element& rem (Element& r, const Element& a, const Element& b)  {
			Element q;
			return r= a - quo(q,a,b)*b  ;
		}	

		/** @brief quoin (a, b)
		 *  a = quotient (a, b)
		 */
		inline static Element& quoin (Element& a, const Element& b)  {
			return quo(a,a,b);
		}

		/** @brief quoin (a, b)
		 *  a = quotient (a, b)
		 */
		inline static Element& remin (Element& a, const Element& b)  {
			return rem(a,a,b);
		}

		
		/** @brief quoRem (q, r, a, b)				
		 * q = [a/b], r = a - b*q
		 * |r| < |b|, and if r != 0, sign(r) = sign(b)
		 */
		inline static void quoRem (Element& q, Element& r, const Element& a, const Element& b) {
			quo(q,a,b);
			r = a - q*b;
		}

		/** @brief isDivisor (a, b)
		 *  Test if a | b.
		 */
		inline static bool isDivisor (const Element& a, const Element& b) {
			double r;
			return rem(r,a,b)==0.;
		}

		// some specializations and conversions
		double& convert(double& x, const Element& y) const
		{ return x=y;}

		Element& init(Element& x, const double& y) const 
		{ return x=y;}
      
		integer& convert(integer& x, const Element& y) const
		{ return x=(integer)y;}
      
		Element& init(Element& x, const integer& y) const 
		{ return x=(double)y;}


	}; //end of class PID_double

	template<>
	std::ostream &UnparametricField<double>::write (std::ostream &os) const
	{ return os << "unparam<double>"; }

} //end of namespace LinBox
#endif