This file is indexed.

/usr/include/linbox/field/PID-integer.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/* -*- mode: C++; tab-width:8; indent-tabs-mode: t; c-basic-offset:8 -*- */
/* linbox/field/PID-integer.h
 * Copyright (C) 2004 Pascal Giorgi 
 *
 * Written by :
 *               Pascal Giorgi  pascal.giorgi@ens-lyon.fr
 *               
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */




#ifndef __PID_INTEGER_H
#define __PID_INTEGER_H

#include <limits.h>			    
#include <iostream>
#include <linbox/integer.h>
#include <linbox/field/unparametric.h>
#include <linbox/field/field-traits.h>



namespace LinBox {

	template <class Ring>
	class ClassifyRing;

	/// \ingroup ring
	class PID_integer : public UnparametricField<integer> 
	{

	public:

		typedef integer Element;

		inline Element& axpyin (integer &r, const integer& a, const integer& x) const {
			return Integer::axpyin(r,a,x);
		}

		inline  bool isUnit (const Element& x) const { 
			
			return (x == Element(1))  || (x== Element(-1));
		}

		inline  Element& abs(Element& x, const Element& a) const {
			x= (a>0)? a: -a;
			return x;
		}

		inline  Element abs(const Element& a) const {
			return (a>0)? a: -a;
		}

		/** compare two elements, a and b
		  * return 1, if a > b
		  * return 0, if a = b;
		  * return -1. if a < b
		  */
		inline long compare (const Element& a, const Element& b) const {
			
			return (a>b)? 1: ((a<b)? -1 : 0);
		}
		
		/** @brief gcd (g, a, b)
		 *  return g = gcd (a, b)
		 */
		inline  Element& gcd (Element& g, const Element& a, const Element& b) const {
			return ::gcd(g,a,b);
		}
	
		/** @brief gcdin(g, b)
		 *  return g = gcd (g, b)
		 */
		inline  Element& gcdin (Element& g, const Element& b) const {
			gcd(g, g, b);
			return g;
		}

		/** @brief xgcd (g, s, t, a, b)
		 *  g = gcd(a, b) = a*s + b*t.
		 *  The coefficients s and t are defined according to the standard
		 *  Euclidean algorithm applied to |a| and |b|, with the signs then
		 *  adjusted according to the signs of a and b.
		 */
		inline  Element& xgcd (Element& g, Element& s, Element& t, const Element& a, const Element& b) const {
			return ::gcd(g,a,b,s,t);
		}

		/** @brief lcm (c, a, b)
		 *  c = lcm (a, b)
		 */
		inline  Element& lcm (Element& c, const Element& a, const Element& b) const {
			
			if ((a==Element(0)) || (b==Element(0))) return c = Element(0);
			
			else {
				Element g;
			
				gcd (g, a, b);
				
				c= a*b;
				c /= g;

				c=abs (c);
			
				return c;
			}
		}
		
		/** @brief lcmin (l, b)
		 *  l = lcm (l, b)
		 */
		inline  Element& lcmin (Element& l, const Element& b) const {

			if ((l==Element(0)) || (b==Element(0))) return l = Element(0);
			
			else {
				Element g;
			
				gcd (g, l, b);
				
				l*= b;
				l/= g;

				l=abs (l);
			
				return l;
			}
	
		}
            
                inline  void reconstructRational (Element& a, Element& b, const Element& x, const Element& m) const {
                        RationalReconstruction(a,b, x, m, ::sqrt(m), true, true);
                }
            
                inline  void reconstructRational (Element& a, Element& b, const Element& x, const Element& m, const Element& bound) const {
                        RationalReconstruction(a,b, x, m, bound, true, true);
                }
            
                inline  long reconstructRational (Element& a, Element& b, 
                                                        const Element& x, const Element& m, 
                                                        const Element& a_bound, const Element& b_bound) const {
                    Element bound = x/b_bound;
                    // if (bound>a_bound) std::cerr << "a_bound: " << a_bound << ", x/b_bound: " << bound << std::endl;
                    
                    RationalReconstruction(a,b,x,m, (bound>a_bound?bound:a_bound), true, false);
                    return  (b > b_bound)? 0: 1;	
                }
           
 

		/** @brief quo (q, x, y)
		 *  q = floor (x/y);
		 */
		inline  Element& quo (Element& q, const Element& a, const Element& b) const {
			return  q = a/b;
		}
      
		/** @brief rem (r, a, b)
		 *  r = remindar of  a / b
		 */
		inline  Element& rem (Element& r, const Element& a, const Element& b)  const {
			return Integer::mod(r,a,b);
		}	

		/** @brief quoin (a, b)
		 *  a = quotient (a, b)
		 */
		inline  Element& quoin (Element& a, const Element& b)  const {
			return quo(a,a,b);
		}

		/** @brief quoin (a, b)
		 *  a = quotient (a, b)
		 */
		inline  Element& remin (Element& a, const Element& b)  const {
			return rem(a,a,b);
		}

		
		/** @brief quoRem (q, r, a, b)				
		 * q = [a/b], r = a - b*q
		 * |r| < |b|, and if r != 0, sign(r) = sign(b)
		 */
		inline  void quoRem (Element& q, Element& r, const Element& a, const Element& b) const {
			quo(q,a,b);
			r = a - q*b;
		}

		/** @brief isDivisor (a, b)
		 *  Test if b | a.
		 */
		inline  bool isDivisor (const Element& a, const Element& b) const {
			Element r;
			return rem(r,a,b)==Element(0);
		}

		/** @brief sqrt(x,y)
		 *  x=floor(sqrt(y))
		 */
		inline Element& sqrt(Element& x, const Element& y) const {
			return ::sqrt(x,y);
		}

                inline  Element powtwo(Element& z, const Element& x) const {
                        z = 1;
                        //cout << "max" << ULONG_MAX << "x" << x << "?" << (x < ULONG_MAX);
                        if (x < LONG_MAX) {
                                z<<=(long int)x;
                                //cout << "z"<< z;
                                return z;
                        } else {
                                Element n,m;
                                quoRem(n,m,x,(Element)(LONG_MAX-1));
                                for (int i=0; i < n; ++i) {
                                        z <<=(long int)(LONG_MAX-1);
                                }
                                z <= (long int)m;
                                return z;
                        }

                        //for (Element i=0; i < x; ++i) {
                        //      z <<= 1;
                        //}
                        return z;
                }

                inline  Element logtwo(Element& z, const Element& x) const {
                        //cout << "x" << x;
                        if (x<1) return z=-1;
                        z = 0;
                        Element cur = x;
                        cur >>=1;//cout << "cur" << cur;
                        while (cur > 0) {
                                //cout << "cur" << cur;
                                ++z;
                                cur >>=1;
                        }
                        //cout << "z" << z;
                        return z;
                }



		// some specializations and conversions
		inline double& convert(double& x, const Element& y) const
		{ return x= (double)y;}

		inline Element& init(Element& x, const double& y) const 
		{ return x=Element(y);}
      
		inline integer& convert(integer& x, const Element& y) const
		{ return x=y;}
      
		inline Element& init(Element& x, const integer& y = 0) const 
		{ return x=y;}
        protected:
                    // Rational number reconstruction: 
                    // num/den \equiv f modulo m, with |num|<k and 0 < |den| \leq f/k
                    // See [von zur Gathen & Gerhard, Modern Computer Algebra, 
                    //      5.10, Cambridge Univ. Press 1999]
                inline void RationalReconstruction( Element& a, Element& b, 
                                                          const Element& f, const Element& m, 
                                                          const Element& k, 
                                                          bool reduce, bool recursive ) const {
			Element x(f);
                        if (x<0) {
                        	if ((-x)>m)
                            		x %= m;
                        	if (x<0)
                            		x += m;
                    	} else {
                        	if (x>m)
                            		x %= m;
                    	}

                        if (x == 0) {
                            a = 0;
                            b = 1;
                        } else {
                            bool res = ratrecon(a,b,x,m,k, reduce, recursive);
                            if (recursive)
                                for( Element newk = k + 1; (!res) && (newk<f) ; ++newk)
                                    res = ratrecon(a,b,x,m,newk,reduce, true);
                        }
                }

                // Precondition f is suppposed strictly positive and strictly less than m
                inline  bool ratrecon( Element& num, Element& den, 
                                             const Element& f, const Element& m, 
                                             const Element& k, 
                                             bool reduce, bool recursive ) const {
                    
			//std::cerr << "RatRecon : " << f << " " << m << " " << k << std::endl;
                    

                        Element  r0, t0, q, u;
                        r0=m;
                        t0=0;
                        num=f;
                        den=1;
                        while(num>=k)
                        {
        
                            q = r0;
                            q /= num;        // r0/num
                            

                            u = num;
                            num = r0;  	// num <-- r0
                            r0 = u;	// r0 <-- num
//                             u *= q;
//                             num -= u;	// num <-- r0-q*num
			    Integer::axmyin(num,u,q);
                            if (num == 0) return false;
                            
                            u = den;
                            den = t0;  	// num <-- r0
                            t0 = u;	// r0 <-- num
//                             u *= q;
//                             den -= u;	// num <-- r0-q*num
			    Integer::axmyin(den,u,q);

                        } 

//                        if (den < 0) {
//                                Integer::negin(num);
//                                Integer::negin(den);
//                        }
 
                        if (reduce) {
    
                                // [GG, MCA, 1999] Theorem 5.26
                                // (i)
//                            if (den < 0) {
//                                Integer::negin(num);
//                                Integer::negin(den);
//                            }

                                // (ii)
                            Element gg;
                            if (gcd(gg,num,den) != 1) {
                                
                                Element ganum, gar2;
                                for( q = 1, ganum = r0-num, gar2 = r0 ; (ganum >= k) || (gar2<k); ++q ) {
					ganum -= num;
					gar2 -= num;
                                }
                                
//                             r0 -= q * num;
//                             t0 -= q * den;
                                Integer::axmyin(r0,q,num);
                                Integer::axmyin(t0,q,den);
                                
                                if (t0 < 0) {
                                    num = -r0;
                                    den = -t0;
                                } else {
                                    num = r0;
                                    den = t0;
                                }
                                
//                                if (t0 > m/k) {
				if (den > m/k) {
                                    if (!recursive) 
                                        std::cerr 
                                            << "*** Error *** No rational reconstruction of " 
                                            << f 
                                            << " modulo " 
                                            << m 
                                            << " with denominator <= " 
                                            << (m/k)
                                            << std::endl;   
                                }
                                if (gcd(gg,num,den) != 1) {
                                    if (!recursive) 
                                        std::cerr 
                                            << "*** Error *** There exists no rational reconstruction of " 
                                            << f 
                                            << " modulo " 
                                            << m 
                                            << " with |numerator| < " 
                                            << k
                                            << std::endl
                                            << "*** Error *** But " 
                                            << num
                                            << " = "
                                            << den
                                            << " * "
                                            << f
                                            << " modulo " 
                                            << m 
                                            << std::endl;
                                    return false;
                                }
                            }
                        }
                       // (i)
                       if (den < 0) {
	                       Integer::negin(num);
                               Integer::negin(den);
                       }

// std::cerr << "RatRecon End " << num << "/" << den << std::endl;
                        return true;    
                }

	}; //end of class PID_integer

	template<>
	struct ClassifyRing<PID_integer> {
		typedef RingCategories::IntegerTag categoryTag;
	};
	template<>
	inline std::ostream &UnparametricField<integer>::write (std::ostream &os) const
	{ return os << "unparam<integer>"; }

	/*
	// Specialization for Homomorphism
	template <class _Target>
	class Hom<PID_integer, _Target> {
	public:
		typedef PID_integer Source;
		typedef _Target Target;
		typedef typename Source::Element SrcElt;
		typedef typename Target::Element Elt;
		
		Hom(const Source& S, const Target& T) : _source (S), _target(T){}

		Elt& image(Elt& t, const SrcElt& s) {
			if  (s.bitsize() > 52 )
				_target.init(t,s);
			else
				_target.init(t, (double)s);
			return t;
		}

		SrcElt& preimage(SrcElt& s, const Elt& t) {
			_source.convert(s,t);
			return s;
		}

		const Source& source() { return _source;}

		const Target& target() { return _target;}
		
	protected:
		double tmp;
		Source _source;
		Target _target;
		
	};
	
	*/
} //end of namespace LinBox
#endif