/usr/include/linbox/field/gf2.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/field/gf2.h
* Copyright (C) 2003-2007 The LinBox group
*
* Authors : B. Hovinen, JG Dumas, C. Pernet
*
* ------------------------------------
*
* See COPYING for license information.
*/
#ifndef __FIELD_GF2_H
#define __FIELD_GF2_H
#include <iostream>
#include <climits>
#include <cmath>
#include "linbox/integer.h"
#include "linbox/field/field-interface.h"
#include "linbox/util/debug.h"
#include "linbox/vector/bit-vector.h"
#include "linbox/linbox-config.h"
#include "linbox/field/field-traits.h"
// Namespace in which all LinBox code resides
namespace LinBox
{
class GF2RandIter;
/**
* \brief Integers modulo 2
*
* This is a tuned implementation of the field of integers modulo
* 2. In particular, when one constructs a VectorDomain object over
* this field, highly optimized bit operations will be used to make
* vector arithmetic very fast.
\ingroup field
*/
template <class Ring>
struct ClassifyRing;
class GF2;
template<>
struct ClassifyRing<GF2> {
typedef RingCategories::ModularTag categoryTag;
};
class GF2 : public FieldInterface
{
public:
/** Element type
*/
typedef bool Element;
/** Random iterator generator type.
* It must meet the common object interface of random element generators
* as given in the the archetype RandIterArchetype.
*/
typedef GF2RandIter RandIter;
/** @name Object Management
*/
//@{
/** Default constructor.
*/
GF2 (int p = 2, int exp = 1) {
if(p != 2) throw PreconditionFailed(__FUNCTION__,__LINE__,"modulus must be 2");
if(exp != 1) throw PreconditionFailed(__FUNCTION__,__LINE__,"exponent must be 1");
}
/** Copy constructor.
* Constructs Modular object by copying the field.
* This is required to allow field objects to be passed by value
* into functions.
* @param F Modular object.
*/
GF2 (const GF2 &F) {}
/** Assignment operator
* Required by the archetype
*
* @param F constant reference to Modular object
* @return reference to Modular object for self
*/
const GF2 &operator = (const GF2 &F)
{ return *this; }
/** Initialization of field base element from an integer.
* Behaves like C++ allocator construct.
* This function assumes the output field base element x has already been
* constructed, but that it is not already initialized.
* This is not a specialization of the template function because
* such a specialization is not allowed inside the class declaration.
* @return reference to field base element.
* @param x field base element to contain output (reference returned).
* @param y integer.
*/
Element &init (Element &x, const integer &y = 0) const
{ return x = long (y) & 1; }
BitVector::reference init (BitVector::reference x, const integer &y = 0) const
{ return x = long (y) & 1; }
std::_Bit_reference init (std::_Bit_reference x, const integer &y = 0) const
{ return x = long (y) & 1; }
/** Conversion of field base element to a template class T.
* This function assumes the output field base element x has already been
* constructed, but that it is not already initialized.
* @return reference to template class T.
* @param x template class T to contain output (reference returned).
* @param y constant field base element.
*/
integer &convert (integer &x, Element y) const
{ return x = y; }
/** Assignment of one field base element to another.
* This function assumes both field base elements have already been
* constructed and initialized.
* @return reference to x
* @param x field base element (reference returned).
* @param y field base element.
*/
Element &assign (Element &x, Element y) const
{ return x = y; }
BitVector::reference assign (BitVector::reference x, Element y) const
{ return x = y; }
std::_Bit_reference assign (std::_Bit_reference x, Element y) const
{ return x = y; }
/** Cardinality.
* Return integer representing cardinality of the domain.
* Returns a non-negative integer for all domains with finite
* cardinality, and returns -1 to signify a domain of infinite
* cardinality.
* @return integer representing cardinality of the domain
*/
integer &cardinality (integer &c) const
{ return c = 2; }
/** Characteristic.
* Return integer representing characteristic of the domain.
* Returns a positive integer to all domains with finite characteristic,
* and returns 0 to signify a domain of infinite characteristic.
* @return integer representing characteristic of the domain.
*/
integer &characteristic (integer &c) const
{ return c = 2; }
//@} Object Management
/** @name Arithmetic Operations
* x <- y op z; x <- op y
* These operations require all elements, including x, to be initialized
* before the operation is called. Uninitialized field base elements will
* give undefined results.
*/
//@{
/** Equality of two elements.
* This function assumes both field base elements have already been
* constructed and initialized.
* @return boolean true if equal, false if not.
* @param x field base element
* @param y field base element
*/
bool areEqual (Element x, Element y) const
{ return x == y; }
/** Zero equality.
* Test if field base element is equal to zero.
* This function assumes the field base element has already been
* constructed and initialized.
* @return boolean true if equals zero, false if not.
* @param x field base element.
*/
bool isZero (Element x) const
{ return !x; }
/** One equality.
* Test if field base element is equal to one.
* This function assumes the field base element has already been
* constructed and initialized.
* @return boolean true if equals one, false if not.
* @param x field base element.
*/
bool isOne (Element x) const
{ return x; }
//@} Arithmetic Operations
/** @name Input/Output Operations */
//@{
/** Print field.
* @return output stream to which field is written.
* @param os output stream to which field is written.
*/
std::ostream &write (std::ostream &os) const
{ return os << "integers mod 2"; }
/** Read field.
* @return input stream from which field is read.
* @param is input stream from which field is read.
*/
std::istream &read (std::istream &is)
{ return is; }
/** Print field base element.
* This function assumes the field base element has already been
* constructed and initialized.
* @return output stream to which field base element is written.
* @param os output stream to which field base element is written.
* @param x field base element.
*/
std::ostream &write (std::ostream &os, Element x) const
{ return os << x; }
/** Read field base element.
* This function assumes the field base element has already been
* constructed and initialized.
* @return input stream from which field base element is read.
* @param is input stream from which field base element is read.
* @param x field base element.
*/
std::istream &read (std::istream &is, Element &x) const
{ is >> x; return is; }
std::istream &read (std::istream &is, BitVector::reference x) const
{ is >> x; return is; }
std::istream &read (std::istream &is, std::_Bit_reference x) const
{ bool a; is >> a; x=a; return is; }
//@}
/** @name Arithmetic Operations
* x <- y op z; x <- op y
* These operations require all elements, including x, to be initialized
* before the operation is called. Uninitialized field base elements will
* give undefined results.
*/
//@{
/** Addition.
* x = y + z
* This function assumes all the field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
* @param z field base element.
*/
Element &add (Element &x, Element y, Element z) const
{ return x = y ^ z; }
BitVector::reference add (BitVector::reference x, Element y, Element z) const
{ return x = y ^ z; }
std::_Bit_reference add (std::_Bit_reference x, Element y, Element z) const
{ return x = y ^ z; }
/** Subtraction.
* x = y - z
* This function assumes all the field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
* @param z field base element.
*/
Element &sub (Element &x, Element y, Element z) const
{ return x = y ^ z; }
BitVector::reference sub (BitVector::reference x, Element y, Element z) const
{ return x = y ^ z; }
std::_Bit_reference sub (std::_Bit_reference x, Element y, Element z) const
{ return x = y ^ z; }
/** Multiplication.
* x = y * z
* This function assumes all the field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
* @param z field base element.
*/
Element &mul (Element &x, Element y, Element z) const
{ return x = y & z; }
BitVector::reference mul (BitVector::reference x, Element y, Element z) const
{ return x = y & z; }
std::_Bit_reference mul (std::_Bit_reference x, Element y, Element z) const
{ return x = y & z; }
/** Division.
* x = y / z
* This function assumes all the field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
* @param z field base element.
*/
Element &div (Element &x, Element y, Element z) const
{ return x = y; }
BitVector::reference div (BitVector::reference x, Element y, Element z) const
{ return x = y; }
std::_Bit_reference div (std::_Bit_reference x, Element y, Element z) const
{ return x = y; }
/** Additive Inverse (Negation).
* x = - y
* This function assumes both field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
*/
Element &neg (Element &x, Element y) const
{ return x = y; }
BitVector::reference neg (BitVector::reference x, Element y) const
{ return x = y; }
std::_Bit_reference neg (std::_Bit_reference x, Element y) const
{ return x = y; }
/** Multiplicative Inverse.
* x = 1 / y
* This function assumes both field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
*/
Element &inv (Element &x, Element y) const
{ return x = y; }
BitVector::reference inv (BitVector::reference x, Element y) const
{ return x = y; }
std::_Bit_reference inv (std::_Bit_reference x, Element y) const
{ return x = y; }
/** Natural AXPY.
* r = a * x + y
* This function assumes all field elements have already been
* constructed and initialized.
* @return reference to r.
* @param r field element (reference returned).
* @param a field element.
* @param x field element.
* @param y field element.
*/
BitVector::reference axpy (BitVector::reference r,
Element a,
Element x,
Element y) const
{ return r = (a & x) ^ y; }
std::_Bit_reference axpy (std::_Bit_reference r,
Element a,
Element x,
Element y) const
{ return r = (a & x) ^ y; }
Element &axpy (Element &r, Element a, Element x, Element y) const
{ return r = (a & x) ^ y; }
//@} Arithmetic Operations
/** @name Inplace Arithmetic Operations
* x <- x op y; x <- op x
*/
//@{
/** Inplace Addition.
* x += y
* This function assumes both field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
*/
Element &addin (Element &x, Element y) const
{ return x ^= y; }
BitVector::reference addin (BitVector::reference x, Element y) const
{ return x ^= y; }
Element& addin (std::_Bit_reference& x, Element y) const
{ return addin( (bool&)x,y); }
/** Inplace Subtraction.
* x -= y
* This function assumes both field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
*/
Element &subin (Element &x, Element y) const
{ return x ^= y; }
BitVector::reference subin (BitVector::reference x, Element y) const
{ return x ^= y; }
Element& subin (std::_Bit_reference& x, Element y) const
{ return subin((bool&)x, y); }
/** Inplace Multiplication.
* x *= y
* This function assumes both field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
*/
Element &mulin (Element &x, Element y) const
{ return x &= y; }
BitVector::reference mulin (BitVector::reference x, Element y) const
{ return x &= y; }
Element& mulin (std::_Bit_reference& x, Element y) const
{ return mulin((bool&)x,y); }
/** Inplace Division.
* x /= y
* This function assumes both field base elements have already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
* @param y field base element.
*/
Element &divin (Element &x, Element y) const
{ return x; }
BitVector::reference divin (BitVector::reference x, Element y) const
{ return x; }
std::_Bit_reference divin (std::_Bit_reference x, Element y) const
{ return x; }
/** Inplace Additive Inverse (Inplace Negation).
* x = - x
* This function assumes the field base element has already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
*/
Element &negin (Element &x) const
{ return x; }
BitVector::reference negin (BitVector::reference x) const
{ return x; }
std::_Bit_reference negin (std::_Bit_reference x) const
{ return x; }
/** Inplace Multiplicative Inverse.
* x = 1 / x
* This function assumes the field base elementhas already been
* constructed and initialized.
* @return reference to x.
* @param x field base element (reference returned).
*/
Element &invin (Element &x) const
{ return x; }
BitVector::reference invin (BitVector::reference x) const
{ return x; }
std::_Bit_reference invin (std::_Bit_reference x) const
{ return x; }
/** Inplace AXPY.
* r += a * x
* This function assumes all field elements have already been
* constructed and initialized.
* Purely virtual
* @return reference to r.
* @param r field element (reference returned).
* @param a field element.
* @param x field element.
*/
Element &axpyin (Element &r, Element a, Element x) const
{ return r ^= a & x; }
BitVector::reference axpyin (BitVector::reference r, Element a, Element x) const
{ return r ^= a & x; }
Element& axpyin (std::_Bit_reference& r, Element a, Element x) const
{ return axpyin((bool&)r,a,x); }
//@} Inplace Arithmetic Operations
static inline int getMaxModulus() { return 2; }
}; // class GF2
} // namespace LinBox
#include "linbox/randiter/gf2.h"
#include "linbox/field/gf2.inl"
#endif // __FIELD_GF2_H
|