/usr/include/linbox/field/local2_32.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/field/local2_32.h
* written by bds, wan
*
*/
#ifndef __LOCAL2_32_H
#define __LOCAL2_32_H
#include "linbox/field/unparametric.h"
#include "linbox/util/debug.h"
#include "linbox/linbox-config.h"
#include <linbox/field/field-traits.h>
#include <linbox/integer.h>
#include <linbox/field/field-traits.h>
namespace LinBox
{
template<typename Ring>
struct ClassifyRing;
class Local2_32;
template<>
struct ClassifyRing<Local2_32> {
typedef RingCategories::ModularTag categoryTag;
};
/** \brief Fast arithmetic mod 2^32, including gcd.
*
* Extend UnparametricField<uint32> which is a representation
* of Z_2^32. It is especially fast because it uses hardware arithmetic
* directly. This ring is a Local Principal Ideal Ring.
*
* These needed PIR functions are added:
* gcdin(), isUnit(), also inv() is modified to work correctly.
* The type Exponent is added: more effective rep of the powers of 2,
* which are important because gcds are powers of 2).
* This entails some new versions of divin(), mulin(), isUnit().
*
* Those are the function needed for the LocalSmith algorithm.
* Further appropriate PIR functions may be added later.
* \ingroup field
*/
struct Local2_32: public UnparametricField<uint32>
{
public:
typedef UnparametricField<uint32>::Element Element;
typedef enum {_min=0,_max=32} Exponent; // enum?
//Exponent& init(Exponent& a) { return a = 32; }
Local2_32 (int p=2, int exp=32) :UnparametricField<uint32>(p,exp) {
if(p != 2) throw PreconditionFailed(__FUNCTION__,__LINE__,"modulus must be 2");
if(exp != 32) throw PreconditionFailed(__FUNCTION__,__LINE__,"exponent must be 32");
}
/*
static inline Element& gcd(Element& c, Element& a, const Element& b)
{ c = a | b; Exponent k = 0;
while (! (c & 1)) {c >>= 1; ++k;}
//gcdin (k, b);
cout << "gcd called" << endl;
return c = 1 << k;
}
*/
// assume k is an exponent of 2.
static inline Exponent& gcdin(Exponent& k, const Element& b)
{ /*
Element c = b >> k;
c <<= k;
Element d = b;
std::cout << "c, b" << c << " " << b << "\n";
if (c != b) for(k = 0; ! (d & 1); ++k) d >>= 1;
std::cout << "g, b =" << (int)k << " " << b << "\n";
*/
Element d = b;
int i;
for ( i = 0; (i < k) && (!(d&1)); ++ i) d >>= 1;
return k = Exponent(i);
}
static inline bool isUnit(const Exponent& a)
{ return a == 0; }
static inline bool isZero(const Element& a)
{ return a == 0; }
static inline bool isZero(const Exponent& a)
{ return a >= 32; }
// not used ...
static inline bool isUnit(const Element& a)
{ return a & 1; }
//Element& div(Element& c, const Element& a, const Element& b) const
//{ return c = NTL::rep(a)/NTL::GCD(NTL::rep(a),NTL::rep(b)); }
//
static inline Element& mulin(Element& a, const Exponent& k)
{
if (k >= 32) return a = 0;
else return a <<= k;
}
static inline Element& mulin(Element& a, const Element& b) {
return a *= b;
}
static inline Element& axpyin(Element& r, const Element& x, const Element& y) {
return r += x * y;
}
/*
static inline bool isDivisor(Element a, Element b)
{ while (! (a ^ 1))
{ if (b ^ 1) return false;
a = a >> 1; b = b >> 1;
}
return true;
}
*/
// assume k is an exponent of 2 and the power of 2 exactly divides a
static inline Element& divin(Element& a, const Exponent& k)
{ return a >>= k; }
static inline Element& inv(Element& a, const Element& b) {
if (!isUnit(b))
throw PreconditionFailed(__FUNCTION__,__LINE__,"inv: not a unit");
else {
Element g, s, t;
xgcd(g, s, t, b, -b);
return a = s - t;
}
}
static inline integer getMaxModulus()
{ return integer( "4294967296" ); } // 2^32
protected:
static Element& xgcd(Element& d, Element& s, Element& t, const Element& a, const Element& b)
{
Element u, v, u0, v0, u1, v1, u2, v2, q, r;
u1 = 1; v1 = 0;
u2 = 0; v2 = 1;
u = a; v = b;
while (v != 0) {
q = u / v;
//r = u % v;
r = u - q*v;
u = v;
v = r;
u0 = u2;
v0 = v2;
u2 = u1 - q*u2;
v2 = v1- q*v2;
u1 = u0;
v1 = v0;
}
d = u;
s = u1;
t = v1;
//std::cout << "XGCD is called: d, s, t, a, b, sa + tb: " << d << ' '
// << s << ' ' << t << ' ' << a << ' ' << b << ' ' << s * a + t * b << '\n';
return d;
/*
//Element u, v, u0, v0, u1, v1, u2, v2, q, r;
Element u, v, q, r;
int64 u0, u1, u2;
u1 = 1; //v1 = 0;
u2 = 0; //v2 = 1;
u = a; v = b;
if ( b == 0) {
s = 1;
t = 0;
return d = a ;
}
if (v != 0) {
q = u / v;
//r = u % v;
r = u - q*v;
u = v;
v = r;
u0 = u2;
//v0 = v2;
u2 = u1 - q * u2;
//v2 = v1- q * v2;
u1 = u0;
//v1 = v0;
}
while (v != 0) {
r = u;
while ( r >= v) {
r = u - v;
u2 = u1 - u2;
}
u0 = u2;
u1 = u0;
u = v;
v = r;
}
while (v != 0) {
q = u / v;
//r = u % v;
r = u - q*v;
u = v;
v = r;
u0 = u2;
//v0 = v2;
u2 = u1 - q * u2;
//v2 = v1- q * v2;
u1 = u0;
//v1 = v0;
}
d = u;
s = u1;
t = ((int64) d - u1 * (int64) a) / (int64)b;
//std::cout << "XGCD is called: d, s, t, a, b, sa + tb: " << d << ' '
//<< s << ' ' << t << ' ' << a << ' ' << b << ' ' << s * a + t * b << '\n';
return d;
*/
}
/** @brief
* Half GCD
* g = gcd (a, b).
* exists t, such that: s * a + t * b = g.
* return g.
*/
static Element& HGCD (Element& g, Element& s, const Element& a, const Element& b) {
Element u, v, u0, u1, u2, q, r;
u1 = 1;
u2 = 0;
u = a; v = b;
while (v != 0) {
q = u / v;
//r = u % v;
r = u - q*v;
u = v;
v = r;
u0 = u2;
u2 = u1 - q*u2;
u1 = u0;
}
g = u;
s = u1;
return g;
}
};
template<>
bool FieldTraits< Local2_32 >::goodModulus( const integer& i ) {
return i == Local2_32::getMaxModulus();
}
} // namespace LinBox
#endif // __LOCAL2_32_H
|