This file is indexed.

/usr/include/linbox/field/ntl-ZZ_pX.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#ifndef __FIELD_NTL_ZZ_pX_H
#define __FIELD_NTL_ZZ_pX_H

/** linbox/field/ntl-ZZ_pX.h
  * Daniel Roche, August 2005
  */

#include <linbox/field/unparametric.h>
#include <linbox/field/ntl-ZZ_p.h>
#include <linbox/integer.h>
#include <vector>
#include <NTL/ZZ_pX.h>

namespace LinBox { // namespace in which all LinBox code resides

/** Ring (in fact, a unique factorization domain) of polynomial with
  * coefficients in class NTL_ZZ_p (integers mod a wordsize prime).
  * All the same functions as any other ring, with the addition of:
  * Coeff (type), CoeffField (type), getCoeffField, setCoeff, getCoeff, 
  * leadCoeff, deg
  */
class NTL_ZZ_pX :public UnparametricField<NTL::ZZ_pX> {
    public:
	typedef NTL_ZZ_p CoeffField;
	typedef NTL::ZZ_p Coeff;
	typedef NTL::ZZ_pX Element;
    
	/** Standard LinBox field constructor.  The paramters here
	  * (prime, exponent) are only used to initialize the coefficient field.
	  */
	NTL_ZZ_pX( const integer& p, size_t e = 1 )
	: UnparametricField<NTL::ZZ_pX>(p, e), _CField(p,e)
	{}
	
	/** Constructor from a coefficient field */
	NTL_ZZ_pX( CoeffField cf ) :_CField(cf) {}

	/** Initialize p to the constant y (p = y*x^0) */
	template <class ANY>
	Element& init( Element& p, const ANY& y ) const {
		Coeff temp;
		_CField.init( temp, y );
		return p = temp;
	}

	/** Initialize p to the constant y (p = y*x^0) */
	Element& init( Element& p, const Coeff& y ) const {
		return p = y;
	}

	/** Initialize p from a vector of coefficients.
	  * The vector should be ordered the same way NTL does it: the front
	  * of the vector corresponds to the trailing coefficients, and the back
	  * of the vector corresponds to the leading coefficients.  That is,
	  * v[i] = coefficient of x^i.
	  */
	template <class ANY>
	Element& init( Element& p, const std::vector<ANY>& v ) const {
		p = 0;
		Coeff temp;
		for( long i = 0; i < (long)v.size(); ++i ) {
			_CField.init( temp, v[ (size_t) i ] );
			if( !_CField.isZero(temp) )
				NTL::SetCoeff( p, i, temp );
		}
		return p;
	}

	/** Initialize p from a vector of coefficients.
	  * The vector should be ordered the same way NTL does it: the front
	  * of the vector corresponds to the trailing coefficients, and the back
	  * of the vector corresponds to the leading coefficients.  That is,
	  * v[i] = coefficient of x^i.
	  */
	Element& init( Element& p, const std::vector<Coeff>& v ) const {
		p = 0;
		for( long i = 0; i < (long)v.size(); ++i )
			NTL::SetCoeff( p, i, v[ (size_t) i ] );
		return p;
	}

	/** Convert p to a vector of coefficients.
	  * The vector will be ordered the same way NTL does it: the front
	  * of the vector corresponds to the trailing coefficients, and the back
	  * of the vector corresponds to the leading coefficients.  That is,
	  * v[i] = coefficient of x^i.
	  */
	template< class ANY >
	std::vector<ANY>& convert( std::vector<ANY>& v, const Element& p ) const
	{
		v.clear();
		ANY temp;
		for( long i = 0; i <= this->deg(p); ++i ) {
			_CField.convert( temp, NTL::coeff( p, i ) );
			v.push_back( temp );
		}
		return v;
	}

	/** Convert p to a vector of coefficients.
	  * The vector will be ordered the same way NTL does it: the front
	  * of the vector corresponds to the trailing coefficients, and the back
	  * of the vector corresponds to the leading coefficients.  That is,
	  * v[i] = coefficient of x^i.
	  */
	std::vector<Coeff>& convert( std::vector<Coeff>& v, const Element& p )
		const
	{
		v.clear();
		for( long i = 0; i <= (long)this->deg(p); ++i )
			v.push_back( NTL::coeff(p,i) );
		return v;
	}

	/** Test if an element equals zero */
	bool isZero( const Element& x ) const {
		return ( (this->deg(x) == 0) && 
		         ( _CField.isZero( NTL::ConstTerm(x) ) ) );
	}

	/** Test if an element equals one */
	bool isOne( const Element& x ) const {
		return ( (this->deg(x) == 0) && 
		         ( _CField.isOne( NTL::ConstTerm(x) ) ) );
	}

	/** The LinBox field for coefficients */
	const CoeffField& getCoeffField() const { return _CField; }

	/** Get the degree of a polynomial 
	  * Unlike NTL, deg(0)=0.
	  */
	size_t deg( const Element& p ) const {
		long temp = NTL::deg(p);
		if( temp == -1 ) return 0;
		else return static_cast<size_t>(temp);
	}

	/** r will be set to the reverse of p. */
	Element& rev( Element& r, const Element& p ) {
		NTL::reverse(r,p);
		return r;
	}

	/** r is itself reversed. */
	Element& revin( Element& r ) {
		return r = NTL::reverse(r);
	}

	/** Get the leading coefficient of this polynomial. */
	Coeff& leadCoeff( Coeff& c, const Element& p ) const {
		c = NTL::LeadCoeff(p);
		return c;
	}

	/** Get the coefficient of x^i in a given polynomial */
	Coeff& getCoeff( Coeff& c, const Element& p, size_t i ) const {
		c = NTL::coeff( p, (long)i );
		return c;
	}

	/** Set the coefficient of x^i in a given polynomial */
	Element& setCoeff( Element& p, size_t i, const Coeff& c ) const {
		NTL::SetCoeff(p,(long)i,c);
		return p;
	}

	/** Get the quotient of two polynomials */
	Element& quo( Element& res, const Element& a, const Element& b ) const {
		NTL::div(res,a,b);
		return res;
	}

	/** a = quotient of a, b */
	Element& quoin( Element& a, const Element& b ) const {
		return a /= b;
	}

	/** Get the remainder under polynomial division */
	Element& rem( Element& res, const Element& a, const Element& b ) const {
		NTL::rem(res,a,b);
		return res;
	}

	/** a = remainder of a,b */
	Element& remin( Element& a, const Element& b ) const {
		return a %= b;
	}

	/** Get the quotient and remainder under polynomial division */
	void quorem( Element& q, Element& r,
	                 const Element& a, const Element& b ) const
	{
		NTL::DivRem(q,r,a,b);
	}

	/** Get characteristic of the field - same as characteristic of 
	  * coefficient field. */
	integer& characteristic( integer& c ) const 
		{ return _CField.characteristic(c); }

	/** Get the cardinality of the field.  Since the cardinality is
	  * infinite, by convention we return -1.
	  */
	integer& cardinality( integer& c ) const 
		{ return c = static_cast<integer>(-1); }
	
	static inline integer getMaxModulus()
		{ return CoeffField::getMaxModulus(); }

    private:
	/** Conversion to scalar types doesn't make sense and should not be
	  * used.  Use getCoeff or leadCoeff to get the scalar values of
	  * specific coefficients, and then convert them using coeffField()
	  * if needed.
	  */
	template< class ANY >
	ANY& convert( ANY& x, const Element& y ) const { return x; }

    	CoeffField _CField;
}; // end of class NTL_ZZ_pX

/** Write a description of the field */
// Oustide of class definition so write(ostream&,const Element&) from
// UnparametricField still works.
template<>
std::ostream& UnparametricField<NTL::ZZ_pX>::write( std::ostream& os ) const {
	return os << "Polynomial ring using NTL::ZZ_pX";
}


} // end of namespace LinBox

#endif // __FIELD_NTL_ZZ_pX_H