This file is indexed.

/usr/include/linbox/matrix/matrix-domain.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */

/* linbox/matrix/matrix-domain.h
 * Copyright (C) 2002 Zhendong Wan, Bradford Hovinen
 *
 * Written by Zhendong Wan <wan@mail.eecis.udel.edu>,
 *            Bradford Hovinen <bghovinen@math.uwaterloo.ca>
 *
 * ------------------------------------------------------------
 * 2002-11-26  Bradford Hovinen  <bghovinen@math.uwaterloo.ca>
 *
 * Added detailed documentation, cleaned up the interface slightly, and added
 * support for matrix traits. Added read, write, neg, negin, axpy, and
 * matrix-vector and matrix-black box operations.
 * ------------------------------------------------------------
 *
 * See COPYING for license information.
 */

#ifndef __MATRIX_DOMAIN_H
#define __MATRIX_DOMAIN_H

#include <iostream>

#include "linbox/blackbox/archetype.h"
#include "linbox/vector/vector-domain.h"

namespace LinBox
{

/** \brief For specializing matrix arithmetic
 *
 * This class defines matrix categories that allow us to specialize the matrix
 * arithmetic in \ref MatrixDomain for different matrix representations. For
 * example, a sparse matrix may have an efficient iterator over row vectors but
 * not over column vectors. Therefore, an algorithm that tries to iterate over
 * column vectors will run very slowly. Hence a specialization that avoids using
 * column vectors is used instead.
 */

struct MatrixCategories 
{
	struct BlackboxTag { };
	struct RowMatrixTag : public virtual BlackboxTag { };
	struct ColMatrixTag : public virtual BlackboxTag { };
	struct RowColMatrixTag : public RowMatrixTag, public ColMatrixTag { };
};

template <class Matrix> struct MatrixTraits
{
	typedef Matrix MatrixType;
	typedef typename Matrix::MatrixCategory MatrixCategory;
};

/** \brief Helper class to allow specializations of certain matrix-vector products
 *
 * This class implements a method mulColSPD that multiplies a
 * column-represented matrix by a dense vector
 */

template <class Field>
class MVProductDomain
{
    public:
	typedef typename Field::Element Element;

	MVProductDomain () {}

    protected:
	template <class Vector1, class Matrix, class Vector2>
	inline Vector1 &mulColDense (const VectorDomain<Field> &VD, Vector1 &w, const Matrix &A, const Vector2 &v) const;
};

/** \brief Class of matrix arithmetic functions
 *
 * This class encapuslated matrix-matrix and matrix-vector operations, roughly
 * equivalent to BLAS levels 2 and 3. The arithmetic methods are parameterized
 * by matrix type so that they may be used the same way with sparse matrices,
 * dense matrices, and dense submatrices. Except where otherwise noted, they
 * require the matrix inputs to meet the \ref DenseMatrix archetype.
 *
 * These methods are specialized so that they can run efficiently with different
 * matrix representations. If a matrix has an efficient row iterator, but not an
 * efficient column iterator, a specialization that makes use of the former will
 * be selected. This allows a great deal of flexibility when dealing with sparse
 * matrix arithmetic.
 *
 * For all of the arithmetic operations that output matrices, it is assumed that
 * the output matrix has an efficient row iterator. In typical use, the output
 * matrix will be a \ref DenseMatrixBase or a \ref DenseSubmatrix, which has
 * efficient row and column iterators. In particular, one should not perform
 * these arithmetic operations outputting to a \ref SparseMatrixBase.
 *
 * There are other restrictions. See the method-specific documentation for more
 * details.
 */

template <class Field>
class MatrixDomain : public MVProductDomain<Field>
{
    public:

	///
	MatrixDomain (const Field &F) : _F (F), _VD (F) {}

	/** Retrieve the underlying field
	 * Return a reference to the field that this matrix domain
	 * object uses
	 * @returns reference to field
	 */
	const Field &field () const
		{ return _F; }
	Field &field () 
		{ return _F; }

	/** Print matrix.
	 * @param  os  Output stream to which matrix is written.
	 * @param  A   Matrix.
	 * @returns reference to os.
	 */
	template <class Matrix>
	inline std::ostream &write (std::ostream &os, const Matrix &A) const
		{ return A.write (os, _F); }

	/** Read matrix
	 * @param  is  Input stream from which matrix is read.
	 * @param  A   Matrix.
	 * @returns reference to is.
	 */
	template <class Matrix>
	inline std::istream &read (std::istream &is, Matrix &A) const
		{ return A.read (is, _F); }

	/** Matrix copy
	 * B <- A
	 * Copy the contents of the matrix B to the matrix A
	 *
	 * Both matrices must support the same iterators, row or column.
	 * 
	 * @param B Matrix B
	 * @param A Matrix A
	 * @returns Reference to B
	 */
	template <class Matrix1, class Matrix2>
	inline Matrix1 &copy (Matrix1 &B, const Matrix2 &A) const
		{ return copySpecialized (B, A,
					  typename MatrixTraits<Matrix1>::MatrixCategory (),
					  typename MatrixTraits<Matrix2>::MatrixCategory ()); }

	/** Matrix equality
	 * Test whether the matrices A and B are equal
	 * @param A Input vector
	 * @param B Input vector
	 * @returns true if and only if the matrices A and B are equal
	 */
	template <class Matrix1, class Matrix2>
	bool areEqual (const Matrix1 &A, const Matrix2 &B) const
		{ return areEqualSpecialized (B, A,
					      typename MatrixTraits<Matrix1>::MatrixCategory (),
					      typename MatrixTraits<Matrix2>::MatrixCategory ()); }

	/** Matrix equality with zero
	 * @param A Input matrix
	 * @returns true if and only if the matrix A is zero
	 */
	template <class Matrix>
	inline bool isZero (const Matrix &A) const
		{ return isZeroSpecialized (A, typename MatrixTraits<Matrix>::MatrixCategory ()); }

	/** Matrix-matrix addition
	 * C <- A + B
	 *
	 * Each of A, B, and C must support the same iterator, either row or
	 * column
	 *
	 * @param C Output matrix C
	 * @param A Input matrix A
	 * @param B Input matrix B
	 * @returns Reference to C
	 */
	template <class Matrix1, class Matrix2, class Matrix3>
	inline Matrix1& add (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const
		{ return addSpecialized (C, A, B,
					 typename MatrixTraits<Matrix1>::MatrixCategory (),
					 typename MatrixTraits<Matrix2>::MatrixCategory (),
					 typename MatrixTraits<Matrix3>::MatrixCategory ()); }
    
	/** Matrix-matrix in-place addition
	 * A <- A + B
	 *
	 * Each of A and B must support the same iterator, either row or column
	 *
	 * @param A Input matrix A
	 * @param B Input matrix B
	 * @returns Reference to A
	 */
	template <class Matrix1, class Matrix2>
	inline Matrix1& addin (Matrix1 &A, const Matrix2 &B) const
		{ return addinSpecialized (A, B,
					   typename MatrixTraits<Matrix1>::MatrixCategory (),
					   typename MatrixTraits<Matrix2>::MatrixCategory ()); }

	/** Matrix-matrix subtraction
	 * C <- A - B
	 *
	 * Each of A, B, and C must support the same iterator, either row or
	 * column
	 *
	 * @param C Output matrix C
	 * @param A Input matrix A
	 * @param B Input matrix B
	 * @returns Reference to C
	 */
	template <class Matrix1, class Matrix2, class Matrix3>
	inline Matrix1 &sub (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const
		{ return subSpecialized (C, A, B,
					 typename MatrixTraits<Matrix1>::MatrixCategory (),
					 typename MatrixTraits<Matrix2>::MatrixCategory (),
					 typename MatrixTraits<Matrix3>::MatrixCategory ()); }

	/** Matrix-matrix in-place subtraction
	 * A <- A - B
	 *
	 * Each of A and B must support the same iterator, either row or column
	 *
	 * @param A Input matrix A
	 * @param B Input matrix B
	 * @returns Reference to A
	 */
	template <class Matrix1, class Matrix2>
	inline Matrix1 &subin (Matrix1 &A, const Matrix2 &B) const
		{ return subinSpecialized (A, B,
					   typename MatrixTraits<Matrix1>::MatrixCategory (),
					   typename MatrixTraits<Matrix2>::MatrixCategory ()); }

	/** Matrix negate
	 * B <- -A
	 *
	 * Each of A and B must support the same iterator, either row or column
	 *
	 * @param B Output matrix B
	 * @param A Input matrix A
	 * @returns reference to B
	 */
	template <class Matrix1, class Matrix2>
	inline Matrix1 &neg (Matrix1 &B, const Matrix2 &A) const
		{ return negSpecialized (B, A,
					 typename MatrixTraits<Matrix1>::MatrixCategory (),
					 typename MatrixTraits<Matrix2>::MatrixCategory ()); }

	/** Matrix in-place negate
	 * A <- -A
	 * @param A Input matrix A; result is stored here
	 */
	template <class Matrix>
	inline Matrix &negin (Matrix &A) const
		{ return neginSpecialized (A, typename MatrixTraits<Matrix>::MatrixCategory ()); }

	/** Matrix-matrix multiply
	 * C <- A * B
	 *
	 * C must support both row and column iterators, and the vector
	 * representations must be dense. Examples of supported matrices are
	 * \ref DenseMatrixBase and \ref DenseSubmatrix.
	 *
	 * Either A or B, or both, may have limited iterators. However, either A
	 * must support row iterators or B must support column iterators. If
	 * both A and B lack support for an iterator (either row or column),
	 * then C must support the same type of iterator as A and B.
	 *
	 * @param C Output matrix C
	 * @param A Input matrix A
	 * @param B Input matrix B
	 * @returns Reference to C
	 */
	template <class Matrix1, class Matrix2, class Matrix3>
	inline Matrix1 &mul (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const
		{ return mulSpecialized (C, A, B,
					 typename MatrixTraits<Matrix1>::MatrixCategory (),
					 typename MatrixTraits<Matrix2>::MatrixCategory (),
					 typename MatrixTraits<Matrix3>::MatrixCategory ()); }

	/** Matrix-matrix in-place multiply on the left
	 * B <- A * B
	 *
	 * B should support both row and column iterators, and must be dense. A
	 * must support row iterators.
	 *
	 * @param A Input matrix A
	 * @param B Input matrix B
	 * @returns Reference to B
	 */
	template <class Matrix1, class Matrix2>
	inline Matrix2 &leftMulin (const Matrix1 &A, Matrix2 &B) const;

	/** Matrix-matrix in-place multiply on the right
	 * A <- A * B
	 *
	 * A should support both row and column iterators, and must be dense. B
	 * must support column iterators.
	 *
	 * @param A Input matrix A
	 * @param B Input matrix B
	 * @returns Reference to A
	 */
	template <class Matrix1, class Matrix2>
	inline Matrix1 &rightMulin (Matrix1 &A, const Matrix2 &B) const;

	/** Matrix-matrix in-place multiply
	 * A <- A * B
	 *
	 * This is an alias for \ref rightMulin
	 *
	 * @param A Input matrix A
	 * @param B Input matrix B
	 * @returns Reference to A
	 */
	template <class Matrix1, class Matrix2>
	inline Matrix1 &mulin (Matrix1 &A, const Matrix2 &B) const
		{ return rightMulin (A, B); }

	/** Matrix-scalar multiply
	 * C <- B * a
	 *
	 * Multiply B by the scalar element a and store the result in C. B and C
	 * must support the same iterators.
	 *
	 * @param C Output matrix C
	 * @param B Input matrix B
	 * @param a Input scalar a
	 * @returns Reference to C
	 */
	template <class Matrix1, class Matrix2>
	inline Matrix1 &mul (Matrix1 &C, const Matrix2 &B, const typename Field::Element &a) const
		{ return mulSpecialized (C, B, a,
					 typename MatrixTraits<Matrix1>::MatrixCategory (),
					 typename MatrixTraits<Matrix2>::MatrixCategory ()); }

	/** Matrix-scalar in-place multiply
	 * B <- B * a
	 *
	 * Multiply B by the scalar element a in-place.
	 *
	 * @param B Input matrix B
	 * @param a Input scalar a
	 * @returns Reference to B
	 */
	template <class Matrix>
	inline Matrix &mulin (Matrix &B, const typename Field::Element &a) const
		{ return mulinSpecialized (B, a, typename MatrixTraits<Matrix>::MatrixCategory ()); }

	/** Matrix-matrix in-place axpy
	 * Y <- Y + A*X
	 *
	 * This function combines \ref mul and \ref add, eliminating the need
	 * for an additional temporary in expressions of the form $Y = Y +
	 * AX$. Only one row of additional storage is required. Y may have
	 * either efficient row iterators or efficient column iterators, and the
	 * same restrictions on A and X apply as in \ref mul.
	 *
	 * Note that no out-of-place axpy is provided, since it gives no
	 * benefit. One may just as easily multiply into the result and call
	 * \ref addin.
	 *
	 * @param Y Input matrix Y; result is stored here
	 * @param A Input matrix A
	 * @param X Input matrix X
	 */
	template <class Matrix1, class Matrix2, class Matrix3>
	inline Matrix1 &axpyin (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X) const
		{ return axpyinSpecialized (Y, A, X,
					    typename MatrixTraits<Matrix1>::MatrixCategory (),
					    typename MatrixTraits<Matrix2>::MatrixCategory (),
					    typename MatrixTraits<Matrix3>::MatrixCategory ()); }

	/* FIXME: Need documentation of these methods */
	template<class Matrix1, class Matrix2>
	Matrix1 &pow_apply (Matrix1 &M1, const Matrix2 &M2, unsigned long int k) const;

	template<class Matrix1, class Matrix2>
	Matrix1 &pow_horn (Matrix1 &M1, const Matrix2 &M2, unsigned long int k) const;


	/* @name Matrix-vector arithmetic operations
	 * These operations take a matrix satisfying the \ref DenseMatrix
	 * archetype and LinBox vectors as inputs. They involve matrix-vector
	 * product and matrix-vector AXPY
	 */

	/** Matrix-vector multiply
	 * w <- A * v
	 *
	 * The vectors v and w must be of the same representation (dense, sparse
	 * sequence, sparse associative, or sparse parallel), but they may be of
	 * different types. The matrix A may have any representation.
	 *
	 * @param w Output vector w
	 * @param A Input matrix A
	 * @param v Input vector v
	 * @returns Reference to w
	 */
	template <class Vector1, class Matrix, class Vector2>
	inline Vector1 &vectorMul (Vector1 &w, const Matrix &A, const Vector2 &v) const
		{ return mulSpecialized (w, A, v, typename MatrixTraits<Matrix>::MatrixCategory ()); }

	/** Matrix-vector in-place axpy
	 * y <- y + A*x
	 *
	 * This function eliminates the requirement for temporary storage when
	 * one is computing an expression of the form given above.
	 *
	 * The vectors y and x must be of the same representation (dense, sparse
	 * sequence, sparse associative, or sparse parallel), but they may be of
	 * different types. The matrix A may have any representation.
	 *
	 * Note that out-of-place axpy is not provided since it provides no
	 * benefit -- one can use mul and then addin to exactly the same effect,
	 * with no additional storage or performance cost.
	 * 
	 * @param y Input vector y; result is stored here
	 * @param A Input matrix A
	 * @param x Input vector x
	 */
	template <class Vector1, class Matrix, class Vector2>
	inline Vector1 &vectorAxpyin (Vector1 &y, const Matrix &A, const Vector2 &x) const
		{ return axpyinSpecialized (y, A, x, typename MatrixTraits<Matrix>::MatrixCategory ()); }

	/*? @name Matrix-black box arithmetic operations
	 * These operations mimic the matrix-matrix arithmetic operations above,
	 * but one of the parameters is a \ref BlackboxArchetype.
	 */

	/** Matrix-black box left-multiply
	 * C <- A * B
	 *
	 * Both C and B must support column iterators
	 *
	 * @param C Output matrix
	 * @param A Black box for A
	 * @param B Matrix B
	 */
	template <class Matrix1, class Blackbox, class Matrix2>
	inline Matrix1 &blackboxMulLeft (Matrix1 &C, const Blackbox &A, const Matrix2 &B) const;

	/** Matrix-black box right-multiply
	 * C <- A * B
	 *
	 * Both C and A must support row iterators
	 *
	 * @param C Output matrix
	 * @param A Matrix A
	 * @param B Black box for B
	 */
	template <class Matrix1, class Matrix2, class Blackbox>
	inline Matrix1 &blackboxMulRight (Matrix1 &C, const Matrix2 &A, const Blackbox &B) const;

	/*? @name Matrix permutations
	 * These operations permute the rows or columns of a matrix based on
	 * the given permutation. They are intended for use with Gauss-Jordan
	 * elimination
	 */

	/** Permutation
	 *
	 * A permutation is represented as a vector of pairs, each
	 * pair representing a transposition.
	 */
	typedef std::pair<unsigned int, unsigned int> Transposition;
	typedef std::vector<Transposition> Permutation;



	/** Permute the rows of the given matrix
	 *
	 * @param A Output matrix
	 * @param P_start Start of permutation
	 * @param P_end End of permutation
	 * @returns Reference to A
	 */
	template <class Matrix, class Iterator>
	inline Matrix &permuteRows (Matrix   &A,
				    Iterator  P_start,
				    Iterator  P_end) const
		{ return permuteRowsSpecialized (A, P_start, P_end,
						 typename MatrixTraits<Matrix>::MatrixCategory ()); }

	/** Permute the columns of the given matrix
	 *
	 * @param A Output matrix
	 * @param P_start Start of permutation
	 * @param P_end End of permutation
	 * @returns Reference to A
	 */
	template <class Matrix, class Iterator>
	inline Matrix &permuteColumns (Matrix   &A,
				       Iterator  P_start,
				       Iterator  P_end) const
		{ return permuteColsSpecialized (A, P_start, P_end,
						 typename MatrixTraits<Matrix>::MatrixCategory ()); }

    private:

	// Specialized function implementations
	template <class Matrix1, class Matrix2> Matrix1 &copyRow (Matrix1 &B, const Matrix2 &A) const;
	template <class Matrix1, class Matrix2> Matrix1 &copyCol (Matrix1 &B, const Matrix2 &A) const;

	template <class Matrix1, class Matrix2>
	inline Matrix1 &copySpecialized (Matrix1 &B, const Matrix2 &A,
				  MatrixCategories::RowMatrixTag,
				  MatrixCategories::RowMatrixTag) const
		{ return copyRow (B, A); }
	template <class Matrix1, class Matrix2>
	inline Matrix1 &copySpecialized (Matrix1 &B, const Matrix2 &A,
				  MatrixCategories::ColMatrixTag,
				  MatrixCategories::ColMatrixTag) const
		{ return copyCol (B, A); }
	template <class Matrix1, class Matrix2>
	inline Matrix1 &copySpecialized (Matrix1 &B, const Matrix2 &A,
					 MatrixCategories::RowColMatrixTag,
					 MatrixCategories::RowColMatrixTag) const
		{ return copyRow (B, A); }

	template <class Matrix1, class Matrix2> bool areEqualRow (const Matrix1 &A, const Matrix2 &B) const;
	template <class Matrix1, class Matrix2> bool areEqualCol (const Matrix1 &A, const Matrix2 &B) const;

	template <class Matrix1, class Matrix2>
	inline bool areEqualSpecialized (const Matrix1 &A, const Matrix2 &B,
				  MatrixCategories::RowMatrixTag,
				  MatrixCategories::RowMatrixTag) const
		{ return areEqualRow (A, B); }
	template <class Matrix1, class Matrix2>
	inline bool areEqualSpecialized (const Matrix1 &A, const Matrix2 &B,
				  MatrixCategories::ColMatrixTag,
				  MatrixCategories::ColMatrixTag) const
		{ return areEqualCol (A, B); }
	template <class Matrix1, class Matrix2>
	inline bool areEqualSpecialized (const Matrix1 &A, const Matrix2 &B,
				  MatrixCategories::RowColMatrixTag,
				  MatrixCategories::RowColMatrixTag) const
		{ return areEqualRow (A, B); }

	template <class Matrix> bool isZeroRow (const Matrix &v) const;
	template <class Matrix> bool isZeroCol (const Matrix &v) const;

	template <class Matrix>
	bool isZeroSpecialized (const Matrix &A, MatrixCategories::RowMatrixTag) const
		{ return isZeroRow (A); }
	template <class Matrix>
	bool isZeroSpecialized (const Matrix &A, MatrixCategories::ColMatrixTag) const
		{ return isZeroCol (A); }
	template <class Matrix>
	bool isZeroSpecialized (const Matrix &A, MatrixCategories::RowColMatrixTag) const
		{ return isZeroRow (A); }

	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& addRow (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const;
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& addCol (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const;

	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& addSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::RowMatrixTag) const
		{ return addRow (C, A, B); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& addSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::ColMatrixTag,
				 MatrixCategories::ColMatrixTag,
				 MatrixCategories::ColMatrixTag) const
		{ return addCol (C, A, B); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& addSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::RowColMatrixTag,
				 MatrixCategories::RowColMatrixTag,
				 MatrixCategories::RowColMatrixTag) const
		{ return addRow (C, A, B); }

	template <class Matrix1, class Matrix2> Matrix1& addinRow (Matrix1 &A, const Matrix2 &B) const;
	template <class Matrix1, class Matrix2> Matrix1& addinCol (Matrix1 &A, const Matrix2 &B) const;

	template <class Matrix1, class Matrix2>
	inline Matrix1& addinSpecialized (Matrix1 &A, const Matrix2 &B,
					  MatrixCategories::RowMatrixTag,
					  MatrixCategories::RowMatrixTag) const
		{ return addinRow (A, B); }
	template <class Matrix1, class Matrix2>
	inline Matrix1& addinSpecialized (Matrix1 &A, const Matrix2 &B,
					  MatrixCategories::ColMatrixTag,
					  MatrixCategories::ColMatrixTag) const
		{ return addinCol (A, B); }
	template <class Matrix1, class Matrix2>
	inline Matrix1& addinSpecialized (Matrix1 &A, const Matrix2 &B,
					  MatrixCategories::RowColMatrixTag,
					  MatrixCategories::RowColMatrixTag) const
		{ return addinRow (A, B); }

	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& subRow (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const;
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& subCol (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const;

	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& subSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::RowMatrixTag) const
		{ return subRow (C, A, B); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& subSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::ColMatrixTag,
				 MatrixCategories::ColMatrixTag,
				 MatrixCategories::ColMatrixTag) const
		{ return subCol (C, A, B); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1& subSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::RowColMatrixTag,
				 MatrixCategories::RowColMatrixTag,
				 MatrixCategories::RowColMatrixTag) const
		{ return subRow (C, A, B); }

	template <class Matrix1, class Matrix2> Matrix1& subinRow (Matrix1 &A, const Matrix2 &B) const;
	template <class Matrix1, class Matrix2> Matrix1& subinCol (Matrix1 &A, const Matrix2 &B) const;

	template <class Matrix1, class Matrix2>
	Matrix1& subinSpecialized (Matrix1 &A, const Matrix2 &B,
				   MatrixCategories::RowMatrixTag,
				   MatrixCategories::RowMatrixTag) const
		{ return subinRow (A, B); }
	template <class Matrix1, class Matrix2>
	Matrix1& subinSpecialized (Matrix1 &A, const Matrix2 &B,
				   MatrixCategories::ColMatrixTag,
				   MatrixCategories::ColMatrixTag) const
		{ return subinCol (A, B); }
	template <class Matrix1, class Matrix2>
	Matrix1& subinSpecialized (Matrix1 &A, const Matrix2 &B,
				   MatrixCategories::RowColMatrixTag,
				   MatrixCategories::RowColMatrixTag) const
		{ return subinRow (A, B); }

	template <class Matrix1, class Matrix2> Matrix1& negRow (Matrix1 &A, const Matrix2 &B) const;
	template <class Matrix1, class Matrix2> Matrix1& negCol (Matrix1 &A, const Matrix2 &B) const;

	template <class Matrix1, class Matrix2>
	inline Matrix1& negSpecialized (Matrix1 &A, const Matrix2 &B,
					MatrixCategories::RowMatrixTag,
					MatrixCategories::RowMatrixTag) const
		{ return negRow (A, B); }
	template <class Matrix1, class Matrix2>
	inline Matrix1& negSpecialized (Matrix1 &A, const Matrix2 &B,
					MatrixCategories::ColMatrixTag,
					MatrixCategories::ColMatrixTag) const
		{ return negCol (A, B); }
	template <class Matrix1, class Matrix2>
	inline Matrix1& negSpecialized (Matrix1 &A, const Matrix2 &B,
					MatrixCategories::RowColMatrixTag,
					MatrixCategories::RowColMatrixTag) const
		{ return negRow (A, B); }

	template <class Matrix> Matrix &neginRow (Matrix &A) const;
	template <class Matrix> Matrix &neginCol (Matrix &A) const;

	template <class Matrix>
	Matrix &neginSpecialized (Matrix &A, MatrixCategories::RowMatrixTag) const
		{ return neginRow (A); }
	template <class Matrix>
	Matrix &neginSpecialized (Matrix &A, MatrixCategories::ColMatrixTag) const
		{ return neginCol (A); }
	template <class Matrix>
	Matrix &neginSpecialized (Matrix &A, MatrixCategories::RowColMatrixTag) const
		{ return neginRow (A); }

	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulRowRowCol (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const;
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulColRowCol (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const;
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulRowRowRow (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const;
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulColColCol (Matrix1 &C, const Matrix2 &A, const Matrix3 &B) const;

	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::ColMatrixTag) const
		{ return mulRowRowCol (C, A, B); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::ColMatrixTag,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::ColMatrixTag) const
		{ return mulColRowCol (C, A, B); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::RowColMatrixTag,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::ColMatrixTag) const
		{ return mulRowRowCol (C, A, B); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::RowMatrixTag) const
		{ return mulRowRowRow (C, A, B); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::ColMatrixTag,
				 MatrixCategories::ColMatrixTag,
				 MatrixCategories::ColMatrixTag) const
		{ return mulColColCol (C, A, B); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &mulSpecialized (Matrix1 &C, const Matrix2 &A, const Matrix3 &B,
				 MatrixCategories::RowColMatrixTag,
				 MatrixCategories::RowColMatrixTag,
				 MatrixCategories::RowColMatrixTag) const
		{ return mulRowRowCol (C, A, B); }

	template <class Matrix1, class Matrix2>
	Matrix1 &mulRow (Matrix1 &C, const Matrix2 &B, const typename Field::Element &a) const;
	template <class Matrix1, class Matrix2>
	Matrix1 &mulCol (Matrix1 &C, const Matrix2 &B, const typename Field::Element &a) const;

	template <class Matrix1, class Matrix2>
	Matrix1 &mulSpecialized (Matrix1 &C, const Matrix2 &B, const typename Field::Element &a,
				 MatrixCategories::RowMatrixTag,
				 MatrixCategories::RowMatrixTag) const
		{ return mulRow (C, B, a); }
	template <class Matrix1, class Matrix2>
	Matrix1 &mulSpecialized (Matrix1 &C, const Matrix2 &B, const typename Field::Element &a,
				 MatrixCategories::ColMatrixTag,
				 MatrixCategories::ColMatrixTag) const
		{ return mulCol (C, B, a); }
	template <class Matrix1, class Matrix2>
	Matrix1 &mulSpecialized (Matrix1 &C, const Matrix2 &B, const typename Field::Element &a,
				 MatrixCategories::RowColMatrixTag,
				 MatrixCategories::RowColMatrixTag) const
		{ return mulRow (C, B, a); }

	template <class Matrix> Matrix &mulinRow (Matrix &B, const typename Field::Element &a) const;
	template <class Matrix> Matrix &mulinCol (Matrix &B, const typename Field::Element &a) const;

	template <class Matrix>
	Matrix &mulinSpecialized (Matrix &B, const typename Field::Element &a,
				  MatrixCategories::RowMatrixTag) const
		{ return mulinRow (B, a); }
	template <class Matrix>
	Matrix &mulinSpecialized (Matrix &B, const typename Field::Element &a,
				  MatrixCategories::ColMatrixTag) const
		{ return mulinCol (B, a); }
	template <class Matrix>
	Matrix &mulinSpecialized (Matrix &B, const typename Field::Element &a,
				  MatrixCategories::RowColMatrixTag) const
		{ return mulinRow (B, a); }

	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinRowRowCol (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X) const;
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinColRowCol (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X) const;
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinRowRowRow (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X) const;
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinColColCol (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X) const;

	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinSpecialized (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X,
				    MatrixCategories::RowMatrixTag,
				    MatrixCategories::RowMatrixTag,
				    MatrixCategories::ColMatrixTag) const
		{ return axpyinRowRowCol (Y, A, X); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinSpecialized (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X,
				    MatrixCategories::ColMatrixTag,
				    MatrixCategories::RowMatrixTag,
				    MatrixCategories::ColMatrixTag) const
		{ return axpyinColRowCol (Y, A, X); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinSpecialized (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X,
				    MatrixCategories::RowColMatrixTag,
				    MatrixCategories::RowMatrixTag,
				    MatrixCategories::ColMatrixTag) const
		{ return axpyinRowRowCol (Y, A, X); }
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinSpecialized (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X,
				    MatrixCategories::RowMatrixTag,
				    MatrixCategories::RowMatrixTag,
				    MatrixCategories::RowMatrixTag) const
		{ return axpyinRowRowRow (Y, A, X); }
	
	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinSpecialized (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X,
				    MatrixCategories::ColMatrixTag,
				    MatrixCategories::ColMatrixTag,
				    MatrixCategories::ColMatrixTag) const
	{ return axpyinColColCol (Y, A, X); }

	template <class Matrix1, class Matrix2, class Matrix3>
	Matrix1 &axpyinSpecialized (Matrix1 &Y, const Matrix2 &A, const Matrix3 &X,
				    MatrixCategories::RowColMatrixTag,
				    MatrixCategories::RowColMatrixTag,
				    MatrixCategories::RowColMatrixTag) const
		{ return axpyinRowRowCol (Y, A, X); }

	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulRowSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				 VectorCategories::DenseVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulRowSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				 VectorCategories::SparseSequenceVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulRowSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				 VectorCategories::SparseAssociativeVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulRowSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				 VectorCategories::SparseParallelVectorTag) const;

	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulColSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				    VectorCategories::DenseVectorTag,
				    VectorCategories::DenseVectorTag) const
	{ return mulColDense (_VD, w, A, v); } 
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulColSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				    VectorCategories::DenseVectorTag,
				    VectorCategories::SparseSequenceVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulColSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				    VectorCategories::DenseVectorTag,
				    VectorCategories::SparseAssociativeVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulColSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				    VectorCategories::DenseVectorTag,
				    VectorCategories::SparseParallelVectorTag) const;

	template <class Vector1, class Matrix, class Vector2>
	inline Vector1 &mulColSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
					   VectorCategories::GenericVectorTag,
					   VectorCategories::GenericVectorTag) const
	{
		typename LinBox::Vector<Field>::Dense y;

		VectorWrapper::ensureDim (y, w.size ());

		VectorWrapper::ensureDim (y, w.size ());

		vectorMul (y, A, v);
		_VD.copy (w, y);

		return w;
	}

	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				 MatrixCategories::RowMatrixTag) const
		{ return mulRowSpecialized (w, A, v, typename VectorTraits<Vector1>::VectorCategory ()); }
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				 MatrixCategories::ColMatrixTag) const
		{ return mulColSpecialized (w, A, v,
					    typename VectorTraits<Vector1>::VectorCategory (),
					    typename VectorTraits<Vector2>::VectorCategory ()); }
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &mulSpecialized (Vector1 &w, const Matrix &A, const Vector2 &v,
				 MatrixCategories::RowColMatrixTag) const
		{ return mulRowSpecialized (w, A, v, typename VectorTraits<Vector1>::VectorCategory ()); }

	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinRowSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				       VectorCategories::DenseVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinRowSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				       VectorCategories::SparseSequenceVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinRowSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				       VectorCategories::SparseAssociativeVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinRowSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				       VectorCategories::SparseParallelVectorTag) const;

	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinColSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				       VectorCategories::DenseVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinColSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				       VectorCategories::SparseSequenceVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinColSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				       VectorCategories::SparseAssociativeVectorTag) const;
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinColSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				       VectorCategories::SparseParallelVectorTag) const;

	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				    MatrixCategories::RowMatrixTag) const
		{ return axpyinRowSpecialized (y, A, x, typename VectorTraits<Vector1>::VectorCategory ()); }
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				    MatrixCategories::ColMatrixTag) const
		{ return axpyinColSpecialized (y, A, x, typename VectorTraits<Vector1>::VectorCategory ()); }
	template <class Vector1, class Matrix, class Vector2>
	Vector1 &axpyinSpecialized (Vector1 &y, const Matrix &A, const Vector2 &x,
				    MatrixCategories::RowColMatrixTag) const
		{ return axpyinRowSpecialized (y, A, x, typename VectorTraits<Vector1>::VectorCategory ()); }

	template <class Matrix, class Iterator>
	inline Matrix &permuteRowsByRow (Matrix   &A,
					 Iterator  P_start,
					 Iterator  P_end) const;

	template <class Matrix, class Iterator>
	inline Matrix &permuteRowsByCol (Matrix   &A,
					 Iterator  P_start,
					 Iterator  P_end) const;

	template <class Matrix, class Iterator>
	inline Matrix &permuteRowsSpecialized (Matrix   &A,
					       Iterator  P_start,
					       Iterator  P_end,
					       MatrixCategories::RowColMatrixTag) const
		{ return permuteRowsByCol (A, P_start, P_end); }

	template <class Matrix, class Iterator>
	inline Matrix &permuteRowsSpecialized (Matrix   &A,
					       Iterator  P_start,
					       Iterator  P_end,
					       MatrixCategories::RowMatrixTag) const
		{ return permuteRowsByRow (A, P_start, P_end); }

	template <class Matrix, class Iterator>
	inline Matrix &permuteRowsSpecialized (Matrix   &A,
					       Iterator  P_start,
					       Iterator  P_end,
					       MatrixCategories::ColMatrixTag) const
		{ return permuteRowsByCol (A, P_start, P_end); }

	template <class Matrix, class Iterator>
	inline Matrix &permuteColsByRow (Matrix   &A,
					 Iterator  P_start,
					 Iterator  P_end) const;

	template <class Matrix, class Iterator>
	inline Matrix &permuteColsByCol (Matrix   &A,
					 Iterator  P_start,
					 Iterator  P_end) const;

	template <class Matrix, class Iterator>
	inline Matrix &permuteColsSpecialized (Matrix   &A,
					       Iterator  P_start,
					       Iterator  P_end,
					       MatrixCategories::RowColMatrixTag) const
		{ return permuteColsByRow (A, P_start, P_end); }

	template <class Matrix, class Iterator>
	inline Matrix &permuteColsSpecialized (Matrix   &A,
					       Iterator  P_start,
					       Iterator  P_end,
					       MatrixCategories::RowMatrixTag) const
		{ return permuteColsByRow (A, P_start, P_end); }

	template <class Matrix, class Iterator>
	inline Matrix &permuteColsSpecialized (Matrix   &A,
					       Iterator  P_start,
					       Iterator  P_end,
					       MatrixCategories::ColMatrixTag) const
		{ return permuteColsByCol (A, P_start, P_end); }

	const Field         &_F;
	VectorDomain<Field>  _VD;
};

}


#include "linbox/matrix/matrix-domain.inl"

#endif // __MATRIX_DOMAIN_H